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Abstract:
Acute myeloid leukemia (AML) is the most common and lethal leukemia in adults. AML consists of many
genetic subtypes which limits broad applicability of targeted therapy. We discovered that the
hematopoietic restricted tetraspanin CD37 is expressed on all primary AML blasts and thus may
represent a common therapeutic target for AML regardless of subtype. We demonstrate that the
internalization properties of CD37 are distinct in AML blasts when compared to normal blood cells,
and that CD37 rapidly accumulates inside AML blasts via dynamin-dependent endocytosis. Our work
revealed that the clinically relevant anti-CD37 antibody drug conjugate (ADC) Debio 1562 (αCD37-
DM1) is highly cytotoxic to AML blasts, but not normal hematopoietic stem cells. We found that
αCD37-DM1 improved clinical outcomes and overall survival in multiple in vivo models of AML.
Together, these data demonstrate that targeting CD37 with an ADC such as αCD37-DM1 is a feasible
and promising therapeutic option for the treatment of AML.
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Key Points  

• CD37 is a surface receptor present on most AML blasts which has unique internalization 

properties when compared to normal blood cells. 

• Treatment of AML with anti-CD37 ADC demonstrates specific cytotoxicity in vitro and 

improved overall survival in vivo. 
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Abstract  

Acute myeloid leukemia (AML) is the most common and lethal leukemia in adults. AML consists 

of many genetic subtypes which limits broad applicability of targeted therapy. We discovered that 

the hematopoietic restricted tetraspanin CD37 is expressed on all primary AML blasts and thus 

may represent a common therapeutic target for AML regardless of subtype.  We demonstrate that 

the internalization properties of CD37 are distinct in AML blasts when compared to normal blood 

cells, and that CD37 rapidly accumulates inside AML blasts via dynamin-dependent endocytosis. 

Our work revealed that the clinically relevant anti-CD37 antibody drug conjugate (ADC) Debio 

1562 (αCD37-DM1) is highly cytotoxic to AML blasts, but not normal hematopoietic stem cells. 

We found that αCD37-DM1 improved clinical outcomes and overall survival in multiple in vivo 

models of AML. Together, these data demonstrate that targeting CD37 with an ADC such as 

αCD37-DM1 is a feasible and promising therapeutic option for the treatment of AML.  

Introduction 

Acute myeloid leukemia (AML) is the most lethal and commonly diagnosed acute leukemia in 

adults and is associated with accumulation of undifferentiated blasts1–5. These blasts disrupt 

normal hematopoiesis and promote profound immune suppression1,6,7. Effective therapeutic 

strategies for AML have been hampered in part to the heterogeneous nature of AML as a disease 

and the similarity of AML blasts and normal hematopoietic stem cells 5,8. The standard of care 7 

+ 3 induction chemotherapy is limited to younger patients with adequate organ function and 

results in prolonged hospitalizations and morbidity9–11. Furthermore, patients who achieve a 

complete remission still require additional consolidative therapy, and in the absence of allogeneic 

stem cell transplant the majority of patients will relapse and die from disease.  

The increased understanding of the complex network of chromosomal rearrangements, 

mutations, epigenetic changes, antigen expression and immune dysregulation in AML has led to 

the pursuit of novel targeted therapeutics with notable successes toward targets such as FLT3, 
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IDH1, and IDH2 mutated disease5,12,13.  However, these three abnormalities represent only a small 

fraction of patients with AML. The bcl-2 mimetic venetoclax in combination with the 

hypomethylating agent azacitidine has allowed for broader targeting and has shown significant 

clinical activity across most AML subtypes in elderly patients not eligible for chemotherapy; 

however, significant myelosuppression and immune suppression accompany this therapeutic 

strategy suggesting cross reactivity with normal hematopoiesis14,15. Antibody drug conjugates 

(ADCs) are highly attractive therapeutic strategies as they specifically target and kill cells 

expressing a unique antigen reducing off-target side effects. To date, there has only been one 

successful ADC in AML, the FDA approved anti-CD33 ADC Gemtuzumab ozogamicin (GO); 

however, the role of this ADC has been limited to the subset of CD33 expressing AML16–18 . While 

other ADCs are currently being investigated for the treatment of AML19,20, success has been 

limited due to the lack of an ideal target, which is traditionally defined as a target with ubiquitous 

expression among multiple subtypes of AML yet absent on normal hematopoietic cells.  

CD37, a heavily glycosylated hematopoietic tetraspanin most commonly expressed in mature B-

cells, was recently reported to be expressed in multiple subtypes of AML at a transcriptional and 

protein level21–28. This expression profile in combination with the safety profile of CD37 ADCs in 

humans suggest CD37 targeting may represent a safe and effective therapeutic strategy for the 

treatment of AML26,28,29.  In this report we build upon previous works to demonstrate that CD37 is 

a shared surface receptor among most primary AML blasts and demonstrate for the first time that 

CD37 has unique internalization properties in leukemic blasts when compared to normal blood 

cells. Furthermore, we show that targeting CD37 in AML with the representative anti-CD37 ADC 

Naratuximab emtansine (αCD37-DM1) results in specific cytotoxicity of AML blasts while 

preserving normal hematopoietic cells. Thus, our work sets the stage for a promising anti-

leukemic therapeutic strategy.  

Methods  
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Cells and Cell lines: All AML specimens were obtained by protocols approved by The Ohio State 

University Institutional Review Board (protocol #2009C0019). AML cell lines were purchased from 

ATCC and DSMZ and cultured in Gibco RPMI Medium 1640 (Life Technologies, Carlsbad, 

California), supplemented with FBS (VWR, Radnor, PA), penicillin G (56 U/ml, Life Technologies, 

Carlsbad, CA) and streptomycin (56 ug/ml, Life Technologies, Carlsbad, California). Primary AML 

cells were cultured in 10% FBS medium enriched with 20 ng/ml FLT-3 ligand, IL-3, hSCF, and 

GM-CSF (PeproTech, East Windsor, New Jersey). 

Flow Cytometry: Experiments were analyzed with Gallios Flow Cytometer (Beckman Coulter, 

Pasadena, California) or LSR Fortessa (BD, Franklin Lakes, New Jersey) followed by Kaluza v 

2.1 analysis (Beckman Coulter, Pasadena, California). Prior to staining with antibodies, cells were 

Fc blocked with a mixture of 50% human serum/PBS or with 100 ug/ml human IgG on ice for 30 

minutes (Athens Research, Athens, Georgia). Antibodies used for human immunophenotype 

analyses: Annexin-FITC (BD Pharminogen), Annexin-PeCy7 (Biolegend), CD2-BV421 (TS 1/8, 

Biolegend), CD3-FITC (UCHT1, BD Biosciences), CD19-PeCy7 (SJ25C1, Biolegend and J3-119 

Beckman Coulter), CD37-PE/AF647 (DebioPharm/Invitrogen), CD45-FITC (5B1, Miltenyi), 

Caspase-3-AF700 (C92-605, BD), Live/Dead NIR/Aqua (Invitrogen), PARP-1-BV421 (F21-852, 

BD), PI (Leinco Technologies), Transferrin-AF647 (Invitrogen). Antibodies used for murine 

immunophenotype analyses: CD37-AF647 (DebioPharm/Invitrogen), CD3-FITC (145-2C11, BD), 

Ly6C-PE (HK1.4, eBio), CD19-PeCy7 (6D5, BioLegend), NK1.1-AF700 (PK136, BD), CD11b-

PerCP-Cy5.5 (M1/70, Biolegend), CD4-BV650 (RM4-5, Biolegend), CD45-BUV395 (30-F11, BD), 

Ly6G/C-BV510 (RB6-8C5, Biolegend), CD8a-BV421 (53-6.7, BioLegend). Additional information 

can be found in the appendix.  

αCD37-DM1 (Naratuximab emtansine, Debio 1562, formerly IMGN 529): Debio 1562, an anti-

CD37 antibody drug conjugate owned by Debiopharm, was kindly supplied by Debiopharm 

(Debiopharm, Lausanne, Switzerland30) as part of a materials transfer agreement.  
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Annexin V/Propidium Iodide Assays: Cells were treated with 0.125 ug/ml αCD37-DM1 or the 

nonbinding isotype huIgG-SMCC-DM1 (Iso-DM1) for 72 hours, and subsequently stained with 

Annexin V and Propidium iodide (see above) according to manufacturer’s instructions (Leinco 

Technologies, Fenton, Missouri). Cells were then analyzed by flow cytometry as described above.  

Antibody conjugation: The anti-CD37 antibody K7153a was conjugated to the fluorochromes 

PE and AF647 per labeling and detecting kit instructions provided by Invitrogen (Invitrogen, 

Waltham, Massachusetts).  

Colony Forming Unit Assays: PBMCs isolated from primary AML samples, HSCs from bone 

marrow (BM) aspirates and from GCSF stimulated stem-cell enriched products obtained through 

OSU-CCC were cultured as described above, rested overnight, then treated with 2.5 ug/ml 

αCD37-DM1, Iso-DM1 or PBS for 36 hours.  After 36 hours, 2 x 104 cells were mixed with 

Methocult Medium Optimum without EPO (Stemcell Technologies, Vancouver, Canada), plated 

in triplicates in 6 well plates and incubated in 1.5% O2. Colonies were then counted following the 

guidelines outlined in the technical manual titled “Human Colony-Forming Unit (CFU) Assays 

Using MethoCult” provided from StemCell Technologies (Document # #28404) with an Olympus 

microscope (Olympus, Center Valley, Pennsylvania). 

Cell Viability Assays: Leukemic cells were seeded at 1.5 x 104 viable cells in 100 ul/well in 

triplicates in 96 well culture plates. MTS tetrazolium and phenazine methosulfate (Sigma-Aldrich, 

St. Louis, Missouri) were added to plates at 24, 48 and 72 hours and analyzed at 492 nm optical 

density with the Synergy/HTX plate reader (Biotek, Winooski, Vermont). Subsequent analysis was 

conducted in GraphPad Prism 7 (Dotmatics, San Diego, California).  

Internalization Assays: Internalization assays were modified from reference provided as 

detailed in the appendix31. In brief, cells were thawed, counted and rested overnight in appropriate 

growth medium. The following day, cells were washed and resuspended in serum-free media at 
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a density of 1e6 cells/ml and incubated at 37C for 1h. After 1 hour, cells were aliquoted into flow 

tubes, washed with PBS and Fc blocked for 30 min on ice. Next, CD37-AF647 or transferrin-

AF647 were added to appropriate tubes and incubated at 37C for 2h (surface + internal CD37) or 

on ice for 2h (surface CD37). After the 2 hour incubation, cells were washed, and stained for flow 

cytometry as described previously. The fold change in CD37-AF647 was calculated using the 

following equation (CD37 MFI at 2h 37C – CD37 MFI at 2h ice)/CD37 MFI 2h ice to determine 

the number of times CD37 internalized over the course of two hours.  

Fluorescent Microscopy: Fluorescent microscopy was performed on fixed AML cell lines and 

primary AML samples (described above) as previously described {PMID: 26583570}. Briefly, 

samples (100 µl) were deposited on ultra-thin 8 well imaging plates (Lab-Tek, Thermo Fisher 

Scientific, Waltham, MA) at a density of 5 x 105 cells/ml and allowed to settle for 20 minutes. 

Images were collected at room temperature using an ANDOR EMCCD camera (Andor Techology 

Ltd, Belfast, Northern Ireland, United Kingdom) on an automated Nikon TiE microscope (Nikon, 

Shinagawa, Tokyo, Japan) under DIC imaging and epifluorescence imaging conditions with 640 

nm excitation for AlexaFlour647-anti-CD37 antibodies.    

Animal Studies: NOD scid gamma (NSG) mice and NOD.Rag1null IL2rgnull SGM3 (NRGS) mice 

purchased through Jackson Laboratory (Jackson Laboratory, Bar Harbor, Maine) were treated 

with IP injections of 25 mg/ml busulfan (Gland Pharma Limited, India) 24 hours prior to 

engraftment with leukemic cells (Table 2). In all models, mice were bled weekly to assess for 

disease burden by flow cytometry and sacrificed upon meeting early removal criteria (ERC) or at 

the end of the study. All animal experiments adhered to guidelines of IACUC of The Ohio State 

University (2015A00000043-R2). Additional study details can be found in appendix.  

Creation of humanized CD37 knock-in transgenic mouse: The humanized CD37 mice 

(hCD37) were produced collaboratively by the corresponding authors and by Biocytogen (Beijing, 

China) using CRISPR/Cas9 to insert Human EGE-DJH-019 flanked by 1.5 kb arms of homology 

D
ow

nloaded from
 http://ashpublications.org/bloodadvances/article-pdf/doi/10.1182/bloodadvances.2024013590/2244849/bloodadvances.2024013590.pdf by guest on 11 N

ovem
ber 2024



 

7 
 

in between the murine 5’UTR and 3’UTR regions of EGE-DJH-019 on chromosome 7 of C57BL/6J 

mice. Male and female hCD37 heterozygous mice were intercrossed to breed wild-type, 

heterozygous and homozygous progenies. Expression of CD37 was established in relevant cell 

types previously described (Figure 4B)32. 

Statistical analysis: Data analysis were performed in SAS 9.4 (SAS Institute, Cary, NC). For 

experiments using 2 matched samples, paired t-tests were used. Two-sample t-tests were used 

to compare 2 independent groups, while ANOVA was conducted for experiments when more than 

2 groups were involved. For the in vivo experiments with longitudinal measures and the in vitro 

experiments using primary cells, mixed effect modeling was performed, incorporating 

observational dependencies for each subject33. Holm’s procedure was used to adjust 

multiplicities34. The association between CD37 expression and sensitivity to αCD37-DM1 was 

evaluated using Spearman correlation method. Survival probabilities were compared using a log-

rank test35. 
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Results 

CD37 is a shared surface receptor among all primary AML blasts  

CD37 expression of normal CD34+ CD38- hematopoietic stem cells (HSCs), normal peripheral 

blood mononuclear cells (PBMCs), primary AML blasts and AML cell lines was assessed using 

the CD37 targeting antibody K7153a conjugated to the fluorochrome PE (αCD37-PE). Staining 

and analysis of cryopreserved HSCs, PBMCs and primary AML blasts revealed that surface 

expression of CD37 is most prevalent on B cells, with comparably dim expression on all other 

blood cell subsets tested (Figure 1A). Using the gating strategy depicted in Figure S1A, we 

identified surface expression of CD37 on all primary AML blasts (Figure 1A). All AML cell lines 

evaluated expressed CD37 except KG1a (n=8/9) (data not shown). Unexpectedly, we discovered 

that CD37 surface expression is dynamic and sensitive to laboratory manipulations such as Ficoll 

Hypaque cell separation and cryopreservation (Figure S2). This previously unrecognized 

phenomenon may explain the lack of description of CD37 on AML cells with inherently lower levels 

of expression. Next, we sought to determine whether the level of surface CD37 on primary AML 

blasts correlated to known AML classifiers and clinical outcomes. Our data revealed CD37 

expression did not correlate to 2017 European LeukemiaNet (ELN) classification36 (Figure 1B), 

mutational status, immunophenotype or overall survival (Figure 1C), a finding not surprising given 

virtual uniform expression across AML subtypes.   

Rapid CD37 receptor internalization properties is unique to AML blasts  

Having demonstrated that virtually all AML cell lines and primary AML blasts express CD37, we 

aimed to determine the potential of this receptor as a therapeutic target for anti-CD37 ADCs in 

AML. First, we sought to understand the internalization properties of CD37. We cultured AML 

blasts and normal donor B cells and monocytes with K7153a conjugated to the fluorochrome 

AlexaFluor 647 (αCD37-AF647). Cells were incubated with αCD37-AF647 for two hours on ice to 
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quantify CD37 surface expression and for two hours at 37C to quantify both surface and 

intracellular CD37 (Figure 2A). The calculated fold change in CD37-AF647 represents the 

number of times each CD37 molecule internalized over the course of two hours. We found that 

AML blasts internalize CD37 significantly more frequently than normal B cells (p=0.001) and 

monocytes (p=0.01) (Figure 2B). Surprisingly, the frequency of CD37 internalization was 

significantly greater in AML blasts, which have dim CD37 expression, when compared to B cells 

(p=0.001), which have the highest surface expression of CD37 among all hematopoietic cells 

(Figure 2B, Figure 1A). Thus, CD37 receptor internalization is independent of surface expression 

making CD37 a unique target for ADCs. Interestingly, our data revealed two distinct cohorts of 

primary AML samples based on frequency of CD37 internalization. We discovered that primary 

AML samples harboring activating signaling mutations such as FLT3, MLL and KRAS internalized 

CD37 with a trend toward increased frequency (p= 0.053) than those without signaling 

mutations8,37(Figure 2C). Having discovered AML blasts have unique CD37 internalization 

properties, we next sought to determine the mechanism of internalization in AML blasts. AML cell 

lines were treated with the dynamin inhibitor Dyngo4a38 and constitutive internalization inhibitor 

Amiloride39 followed by incubation with αCD37-AF647 with subsequent analysis by flow cytometry 

and epifluorescence and confocal microscopy. Only dynamin inhibition substantially decreased 

αCD37-AF647 fluorescence (Figure S3A) and prevented localization of fluorescence within the 

cell (Figures S3B,C).  

To confirm our findings were due to specific binding of αCD37-AF647 to CD37 and subsequent 

internalization, we generated three CD37 KO AML cell lines, MV-411 KO, THP-1 KO and OCI-

AML3 KO using CRISPR-cas940 (Figure S4A-C). Incubation of the CD37+ parental cell lines and 

their KO counterparts with αCD37-AF647 revealed selective uptake and accumulation of AF647 

in the CD37+ parental cell lines (Figure 2D, Figure S4D). Confirming our findings, 

epifluorescence imaging revealed localization of AF647 within vesicles of CD37+ AML cell lines 
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with no uptake or localization in the CD37 KO cell line (Figure 2E). Collectively, our data 

demonstrate αCD37-AF647 is specific for CD37 and is frequently internalized by dynamin 

dependent endocytosis upon binding. 

αCD37-DM1 induces apoptosis and cell death in AML cell lines and primary AML blasts 

while sparing normal HSCs  

Our findings of rapid internalization kinetics of CD37 in AML blasts and high specificity of αCD37-

AF647 for CD37 led us to hypothesize that treatment of AML blasts with an αCD37 ADC would 

result in specific and significant cellular cytotoxicity. To test our hypothesis, we used αCD37-DM1, 

K7153a conjugated to the maytansinoid DM1 via a succinimidyl-4-(N-maleimidomethyl) (SMCC) 

linker, and its isotype, chkti-SMCC-DM1 (Iso-DM1)30. To determine the specificity and cytotoxicity 

of αCD37-DM1 in AML blasts we treated OCI-AML3 and OCI-AML3 KO with αCD37-DM1 and 

Iso-DM1. We found that treatment with αCD37-DM1 resulted in significant dose-dependent 

cytotoxicity in OCI-AML3 but had no effect on OCI-AML3 KO (Figure 3A). Next, we aimed to 

show that  αCD37-DM1 induced cell death occurred due to delivery of the payload DM1. Because 

DM1 is known to induce cell death through activation of the apoptotic cascade 41,42, we assessed 

the frequency of AML blasts undergoing apoptosis in response αCD37-DM1. First, we assessed 

apoptosis of CD37+ and KO AML cell lines treated with αCD37-DM1 and Iso-DM1 using Annexin 

V/PI staining. αCD37-DM1 significantly increased the frequency of Annexin+ PI+ blasts in the 

CD37+ AML cell lines when compared to Iso-DM1 (Figure 3B). As expected, αCD37-DM1 had 

no effect on CD37 KO AML cell lines. Confirming our findings of αCD37-DM1 induced apoptosis 

we found elevated levels of cleaved PARP-1, a key substrate in caspase 9 activation, in AML cell 

lines treated with αCD37-DM1 (Figure 3C). Finally, we assessed the efficacy of αCD37-DM1 in 

untreated newly diagnosed and relapsed primary AML samples and normal HSCs in colony 

forming assays. Primary AML blasts treated with αCD37-DM1 produced significantly fewer 

colonies when compared to Iso-DM1 control (Figure 3D). In contrast, αCD37-DM1 had no effect 
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on colony formation of normal HSCs (Figure 3E,F). Serial replating of these HSC samples 

confirmed αCD37-DM1 is not cytotoxic in normal HSCs in vitro as HSCs treated with αCD37-DM1 

maintained colony forming potential upon serial replating (Figure 3E,F). Thus, our data show 

αCD37-DM1 is uniquely cytotoxic to AML blasts and induces its effects via DM1 activation of the 

apoptotic cascade.   

Treatment with αCD37-DM1 results in minimal toxicities in vivo in novel human CD37 

knock in mouse  

As we demonstrated αCD37-DM1 was cytotoxic to AML blasts while sparing normal HSCs in vitro, 

we next sought to determine the safety profile of αCD37-DM1. We generated a humanized knock-

in CD37 (hCD37) mouse to understand how αCD37-DM1 would affect normal HSCs in vivo. To 

recapitulate the native levels of expression in our hCD37 mouse model, mouse CD37 in all cell 

lineages was replaced by human CD37 but retained endogenous mouse promoters. Homozygous 

and heterozygous hCD37 mice were treated with αCD37-DM1, Iso-DM1 or vehicle followed by 

serial bleeds to assess changes in complete blood counts (Figure 4A). First, we sought to confirm 

that CD37 expression in this mouse model recapitulated what is found in humans. We found that 

CD37 was highly expressed on B cells with variably dim expression on other cell subsets, such 

as T cells, monocytes and neutrophils, mirroring what is seen in humans (Figure 4B). Next, we 

assessed the effect of αCD37-DM1 on total WBC counts. We found that total WBC counts 

decreased noticeably in both the heterozygous hCD37 and homozygous hCD37 mice that was 

almost entirely due to on target B-lymphocyte reduction, with sparing of both T and NK cell 

subsets (Figure 4C, 4D). Additionally, we found that organ function was unaffected by αCD37-

DM1 (Figure S5) and that bone marrow architecture from αCD37-DM1 and Iso-DM1 treated mice 

were normal (Figure 4E). Thus, αCD37-DM1 results in no notable myelosuppression, organ 

toxicity or impaired organ function in this model suggesting αCD37-DM1 may represent a unique 
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therapeutic option for treatment of AML as it results in high cytotoxicity of AML blasts while sparing 

normal hematopoietic cells.  

αCD37-DM1 improves overall survival and decreases AML burden in vivo in multiple 

models  

To test the efficacy of αCD37-DM1 in vivo, we used several different AML mouse models. In all 

studies, mice were randomly assigned to the αCD37-DM1, Iso-DM1 or vehicle cohort and 

assessed for disease burden by flow cytometry (Figure 5A). In the AML THP-1 cell line xenograft, 

treatment with 10 mg/kg αCD37-DM1 significantly improved clinical outcomes and overall survival 

(Figures 5B, 5C). Because 10 mg/kg αCD37-DM1 resulted in eradication of disease, we 

conducted a pilot study to determine if a lower dose of αCD37-DM1 could be used. Our study 

showed that 2.5 mg/kg provided complete receptor occupancy for more than 7 days, leading us 

to use 2.5 mg/kg in subsequent PDX models (data not shown). Mice engrafted with a primary 

AML sample (AML 065) were monitored until they demonstrated circulating disease >/= 2.5% and 

were then randomized to a treatment group (PDX 1). Those treated with αCD37-DM1 had no 

detectible disease in circulation at end of study (10 weeks) and analysis of bone marrow tissue 

showed a small population of leukemia (15.77% +/- 5.82% CD45+ blasts) in some of the αCD37-

DM1 treated mice (Figure 5D, 5E). To determine the effect of initiating treatment earlier in the 

disease course, we engrafted mice with a primary AML sample (AML 066) and initiated treatment 

4 weeks post-engraftment with subsequent monitoring for overall survival (PDX 2).  Mice treated 

with αCD37-DM1 had no detectable circulating disease (Figure 5F) and significantly prolonged 

overall survival (Figure 5G). Our in vivo studies demonstrate that αCD37-DM1 can significantly 

decrease disease in primary human AML models.   

Discussion  
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Herein, we explored the potential of the hematopoietic restricted tetraspanin CD37 as a potential 

therapeutic target for anti-CD37 ADCs for the treatment of AML. We show in a large cohort of 

untreated newly diagnosed and relapsed primary AML samples that CD37 is found on most 

primary AML blasts and is independent of subtype. Thus, CD37 may serve as a promising 

therapeutic target for AML. Recent works have demonstrated that level of CD37 transcript of AML 

blasts correlates with shorter overall survival and that surface expression correlates to ELN 

classification25,28. Within our cohort of 55 untreated newly diagnosed or relapsed refractory AML 

samples, we did not observe a correlation between CD37 expression and overall survival or any 

other clinical classifiers. Variations in CD37 expression in response to laboratory manipulations 

such as cryopreservation and cellular isolation is one possible explanation for these findings.  

Despite low levels of surface expression, AML blasts were capable of frequent internalization of 

CD37 upon binding of αCD37. Surprisingly, we found that the frequency of CD37 internalization 

is independent of surface expression of this antigen. B cells display the highest level of CD37 

surface expression among all hematopoietic cells yet internalize CD37 significantly less frequently 

than AML blasts. Our data revealed that the internalization properties of AML blasts are 

significantly different from those of normal monocytes suggesting that the frequent internalization 

of CD37 is a phenomenon unique to AML blasts.  Our data suggests that frequent internalization 

of CD37 on AML blasts allows for high efficacy of the anti-CD37 ADC αCD37-DM1. We show that 

despite dim CD37 surface expression on these transformed myeloid cells, αCD37-DM1 is highly 

cytotoxic to AML cell lines and primary AML blasts both in vitro and in vivo. Upon binding to CD37, 

αCD37-DM1 is internalized in AML blasts resulting in subsequent activation of the apoptotic 

cascade due to delivery of the ADC payload DM1. Using CD37 KO AML cells lines, we 

demonstrate the high specificity of αCD37-DM1 for its target CD37. Future studies in which CD37 

is restored in the CD37 KO AML cell lines with subsequent cytotoxicity assessment could further 

support the specificity documented within our studies. Most importantly, we demonstrate in 
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multiple xenograft models of cell lines and patient derived AML cells that single agent treatment 

with αCD37-DM1 significantly decreases leukemic burden and improves overall survival. 

Collectively, our data show that the unique internalization properties of CD37 in AML blasts allows 

for high efficacy of αCD37-DM1 despite low levels of surface expression. Thus, CD37 surface 

expression need not be an inclusion criterion for treatment with αCD37 ADCs. 

As CD37 is not restricted to AML blasts but is found on other hematopoietic cell subsets, we 

assessed the potential toxicity of αCD37-DM1 in hematopoietic cells, including hematopoietic 

stem cells (HSCs). We generated a humanized CD37 knock-in mouse model and performed serial 

colony forming unit assays with normal CD34+ CD38- HSCs to address the possibility that 

αCD37-DM1 could be cytotoxic to normal HSCs. Our colony forming unit assays showed that 

HSCs, both from G-CSF mobilized donors and from unstimulated healthy bone marrow aspirates, 

are not significantly affected by αCD37-DM1 treatment as the majority of samples formed colonies 

in response to treatment with αCD37-DM1 and continued through serial replating. Furthermore, 

treatment of our humanized CD37 knock-in mice with αCD37-DM1 resulted in on target B 

lymphocyte reduction but no myelosuppression, decreased marrow cellularity or aplasia. These 

data are consistent with what has been documented with this ADC in the clinical setting, in which 

therapy with αCD37-DM1 causes moderate cytopenias in a minority of patients29. Thus, our work 

with this ADC suggests that αCD37-DM1 preferentially targets and kills leukemic blasts and 

largely spares normal hematopoietic cells, providing hope that we have finally identified a 

therapeutic target in AML which will result in cytotoxicity of AML blasts without major 

myelosuppression.  

In summary, our results demonstrate that CD37 is ubiquitously expressed on AML blasts and that 

treatment with an anti-CD37 ADC provides an effective, swift and potentially safer option for 

patients as it lacks the profound myelotoxicity of most of the current up front treatment options. 

Somewhat uncommon to antibody directed therapy, CD37 surface expression is not correlated 

D
ow

nloaded from
 http://ashpublications.org/bloodadvances/article-pdf/doi/10.1182/bloodadvances.2024013590/2244849/bloodadvances.2024013590.pdf by guest on 11 N

ovem
ber 2024



 

15 
 

with efficacy which may be due to the unique kinetics of membrane trafficking of CD37 in AML 

blasts.  While we were unable to associate pathologic characteristics to membrane trafficking and 

cytotoxic activity within the cohort of samples evaluated within our studies, additional correlative 

studies within a larger cohort would be instrumental in identifying a biomarker for cytotoxic activity. 

Overall, we have demonstrated that targeting CD37 is a novel and highly promising approach for 

AML and that further evaluation of CD37 targeting agents such as αCD37-DM1 in clinical trials is 

warranted.  The presence of CD37 on the majority of AML blasts provides evidence that this 

antigen might serve relevance for other directed immune therapies such as bispecific antibodies 

and chimeric antigen receptor T-cells.  
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Table 1A: Primary AML samples used for in vitro assays 

 

Table 1B: Primary AML samples used for in vitro assays 

 

Table 2: Leukemic cells used in in vivo studies. 

 

Table Legends:  

Table 1. Primary AML samples used for in vitro assays. (A) Molecular mutations, ELN 

classification, CD37 expression (expression of cryopreserved samples after resting 12-16 hours 

overnight),and fold change αCD37-AF647 (fluorescence αCD37-AF647 2h at 37C – surface 

αCD37-AF647)/surface αCD37-AF647) on primary AML samples used in internalization assays. 

(B) Molecular mutations, ELN classification, CD37 expression (expression of cryopreserved 

samples after resting 12-16 hours overnight), and number of colonies formed in response to 

treatment with αCD37-DM1 normalized to negative control displayed for primary samples used in 

colony forming unit assays.  

Table 2. Leukemic cells used in in vivo studies. Cytogenetics, molecular mutations, 

immunophenotype, 2017 ELN classification and expression of CD37 (ΔMFI CD37) listed 

for the THP-1 AML cell line and primary AML samples (AML 065 and AML 066) used for 

in vivo models of AML.   
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Sample ID Cytogenetics  Molecular Mutations ELN classification CD37 Expression (ΔMFI) Fold change αCD37-AF647  

AML 060 Normal CEBPA, JAK3, NRAS Favorable 0.08 3 

AML 062 t(8;21) FLT3-TKD, PTEN, SF3B1 Favorable 0.1 1.3 

AML 072 Complex CEBPA, NOTCH1, TP53 Adverse 0.16 0.5 

AML 065 No dividing cells ASXL1, NPM1, TET2 Favorable 0.2 2.5 

AML 004 Normal FLT3-ITD, NPM1 Intermediate 0.26 3.2 

AML 047 del 13q DNMT3A, MPL, GATA2 Intermediate 0.3 16.2 

AML 067 Normal NA Intermediate 0.43 7 

AML 068 Normal NPM1 Favorable 0.85 6.9 

AML 006 NA NA NA 0.94 12.3 

AML 066 t(6;11) FLT3-TKD Adverse 1.11 8.2 

AML 059 
Normal ASXL1, IDH2, KRAS, 

NRAS, SRSF2 

Adverse 
1.67 9.1 

AML 079 
Complex FLT3-ITD, NPM1, 

DNMT3A 

Adverse 
2.61 7.6 

AML 045 
Complex DNMT3A, FLT3-ITD, 

NPM1 

Adverse 
3.24 10.7 

AML 013 
Normal NRAS, KMT2D, DNMT3A, 

RAD21 

Favorable 
4.78 1.7 

AML 043 del 9q, trisomy 21 CEBPA Favorable 6.65 3.9 

AML 032 Complex TP53 Adverse 17.65 2.2 

AML 097 Complex NA NA NA  7.79 

AML 098 Normal FLT3-ITD Adverse NA 5.64 

AML 099 Trisomy 11 FLT3-ITD Adverse NA 3.66 

AML 064 
Normal ASXL1, CEBPA, IDH2, 

KRAS, SRSF2 

Intermediate 
NA 2.5 
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AML 100 t(9;22) NPM1 Favorable NA 1.1 

AML 101 Normal FLT3-ITD Adverse NA 1 
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Sample ID 
 

Molecular Mutations 
 

ELN Classification  
CD37 Expression 

(ΔMFI) 

 Colonies Formed  
(Normalized to 

Negative Control) 

AML 001 No data Favorable 0.18 0.7 

AML 002 No data Adverse 2.68 0.9 

AML 004 No data Intermediate 0.26 0.5 

AML 006 IDH-1, FLT3-ITD NA 0.94 0.1 

AML 011 FLT3-ITD Favorable 0.15 0.8 

AML 013 None found Favorable 4.78 0.8 

AML 015 FLT3-ITD, NPM1 Intermediate 0.14 0.2 

AML 025 No data Adverse 3.33 0.9 

AML 046 TP53 Adverse 0.28 0.8 

AML 048  NPM1, IDH1, DNMT3A Favorable 0.21 0.3 

AML 062 FLT3-TKD, PTEN, SF3B1 Favorable 0.1 0.0 

AML 065 NPM1, TET2 Favorable 0.2 0.0 
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Sample ID CD37 Expression (ΔMFI) 
Reduction in absolute blasts 

(Normalized to Isotype control) 

AML 001 0.18 0.5 

AML 002 2.68 0.9 

AML 003 ND 0.5 

AML 004 0.26 1.0 

AML 005 0.34 0.9 

AML 006 0.94 0.9 

AML 013 4.78 1.0 

AML 024 ND 0.5 

AML 025 3.33 1.3 

AML 047 0.3 1.1 

AML 049 0.11 0.4 

AML 060 0.08 1.0 

AML 062 0.1 0.1 

AML 067 0.43 0.8 

AML 068 0.85 1.0 

AML 069 ND 0.5 

AML 070 ND 0.9 

AML 071 ND 0.5 

 
 
 
 

D
ow

nloaded from
 http://ashpublications.org/bloodadvances/article-pdf/doi/10.1182/bloodadvances.2024013590/2244849/bloodadvances.2024013590.pdf by guest on 11 N

ovem
ber 2024



 

26 
 

 
 
 
 
 
 

 THP-1 AML 065 AML 066 

Cytogenetics Complex Insufficient Metaphases t(6;11) 

Molecular Mutations NRAS, TP53 NPM1, TET2 FLT3-TKD  

Immunophenotype  
CD34-, CD33+, HLA-DR+ CD34-, CD33+, CD117-, 

CD11b+, CD14-, HLA-DR- 

CD34-, CD33+, CD117-, 

CD11b+, CD14-, HLA-DR+ 

ELN Adverse Favorable Adverse 

ΔMFI CD37  6.86 0.2  1.11 
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Figure Legends  

Figure 1. CD37 is expressed on the surface all primary AML blasts. (A) CD37 surface 

expression on normal hematopoietic stem cells (HSCs), normal donor B cells, T cells, NK cells, 

monocytes and AML. HSCS n=5; B cells n=3; T cells n=3; NK cells n=3, Monocytes n=3. AML = 

55. Mean ± SEM reported. (B) CD37 expression on primary AML blasts grouped by 2017 ELN 

classification. Favorable n = 17. Intermediate n= 13. Adverse n = 23. Mean ± SEM reported. (C) 

Oncoprint for a cohort of 55 cryopreserved untreated, newly diagnosed AML samples in which 

CD37 expression was assessed 12h post-cryopreservation. 

Figure 2. CD37 rapidly internalizes in AML blasts. (A) Schematic of internalization assays in 

which the fold change in αCD37-AF647 expression over the course of 2 hours was determined 

(fluorescence αCD37-AF647 2h at 37C – surface αCD37-AF647)/surface αCD37-AF647) (B) Fold 

change in αCD37-AF647 of primary AML blasts, normal donor B cells and normal donor 

monocytes. AML n=21; B cells n=4; monocytes n=4. Mean ± SEM reported. (C) Fold change in 

αCD37-AF647 of primary AML blasts with and without mutations in activated signaling genes. AS 

mut n= 13; Other n= 6. Mean ± SEM reported. (D) Fold change in αCD37-AF647 in AML cell lines. 

MV-411 n=3;  THP-1 n=3; OCI-AML3 n=3; MV-411 KO n=3; THP-1 KO n=3; OCI-AML3 KO n=3. 

*p < 0.05, ** p < 0.01. Mean ± SEM reported. (E) Representative epifluorescent images of CD37+ 

and CD37- AML cell lines after incubation with αCD37-AF647 at 37C over the course of 2 hours. 

Scale bar is 10 um.   

Figure 3. αCD37-DM1 is cytotoxic to AML cell lines and primary AML blasts but not HSCs 

in vitro. (A) CD37+ and CD37- AML cell line response to Iso-DM1 (blue) and αCD37-DM1 (red) 

treatment assessed by mitochondrial activity. OCI-AML3 n=3; OCI-AML3 KO n =5; p < 0.0001 for 

OCI-AML3 at concentrations greater than 0.125 ug/ml. Mean ± SEM reported. (B) Percent 

annexin+ PI+ cells in response to 0.125ug/ml Iso-DM1 and αCD37-DM1 treatment for 72 hours 
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in CD37+ and CD37- AML cell lines. MV411 n=3; THP-1 n=3; OCI-AML3 n=3; MV-411 KO n=3; 

THP-1 KO n=3; OCI-AML3 KO n=3; **p < 0.01. Mean ± SEM reported. (C) Frequency of live cells 

staining positively for PARP-1 in response to treatment with 1.25 ug/ml Iso-DM1 and  αCD37-

DM1  for 48 hours. MV-411 n=3; OCI-AML3 n=4; THP-1 n=4; OCI-AML3 KO n=3. **p < 0.01. 

Mean ± SEM reported. (D) Number of colonies formed per 1000 leukemic stem cells plated for 

primary AML samples treated with Iso-DM1 and αCD37-DM1. n=13. **p < 0.01. Mean ± SEM 

reported. (E-F) Number of colonies formed in unstimulated normal donor bone marrow (BM) 

aspirates and G-CSF mobilized CD34+ CD38- hematopoietic stem cells (G-CSF mobilized HSCs) 

treated with vehicle, Iso-DM1 and αCD37-DM1. First plating BM aspirates n=4. G-CSF mobilized 

HSCs n=5. Mean ± SEM reported. Second plating BM aspirates n=3, G-CSF mobilized HSCs 

n=2. Mean ± SEM reported. Third plating BM aspirates n=3, G-CSF mobilized HSCs n=2. Mean 

± SEM reported 

Figure 4. αCD37-DM1 shows few on-target hematopoietic toxicities in humanized CD37 

mouse model. (A). Schematic of experimental design. (B) Baseline CD37 expression on B cells, 

T cells, monocytes and neutrophils from a male, heterozygous humanized CD37 knock-in mouse.  

(C) Complete blood counts for homozygous and heterozygous humanized CD37 mice treated 

with αCD37-DM1 and Iso-DM1. hCD37+/+ , Iso-DM1 n= 5; hCD37+/+ , αCD37-DM1 n= 5; hCD37-/-

, Iso-DM1 n=5; hCD37-/-, αCD37-DM1 n= 5. Error bars represent ± SEM. (D) Proportion of 

lymphocytes of total CD45+ live cells. (E) Histopathology images performed on bone marrow 

specimens from humanized CD37 knock-in mice treated with αCD37-DM1 , Iso-DM1 and vehicle 

treated mice at 40x magnification. 

Figure 5. αCD37-DM1 improves overall survival, decreases circulating disease and 

decreases leukemic burden in vivo. (A) Schematic of in vivo studies with αCD37-DM1. (B) 

Overall survival for THP-1 xenograft. n=10.  **p < 0.01, **** p < 0.0001. Mean ± SEM reported. 

(C) Percent hCD33+ leukemic cells present in liver, bone marrow and spleen in THP-1 xenograft. 
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**p < 0.01, ***p < 0.001, ****p < 0.0001. Mean ± SEM reported. (D) Percent circulating hCD45+ 

leukemic cells in PDX 1. Mean ± SEM reported. (E) Percent hCD45+ leukemic cells present in 

liver, bone marrow and spleen in PDX-1. ***p < 0.001, **** p < 0.0001. Mean ± SEM reported. (F) 

Percent circulating hCD45+ leukemic cells in PDX-2. Vehicle n=3; Iso-DM1 n=4; αCD37-DM1 

n=3. (G) Overall survival for PDX-2. Vehicle n=3; Iso-DM-1 n=4; αCD37-DM1 n=3.  *p < 0.05. 

Mean ± SEM reported. 
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