Advance Publication

Experimental Animals

Received: 2023.2.5

Accepted: 2023.6.29

J-STAGE Advance Published Date: 2023.7.6

Model animals 1

2	Humanized CD36 mouse model supports the preclinical evaluation of
3	therapeutic candidates targeting CD36
4	Xiulong Xie ^{a,b,c,#} , Zhenlan Niu ^{c,#} , Linlin Wang ^{c,#} , Xiaofei Zhou ^c , Xingyan Yu ^{a,b,c} ,
5	Hongyan Jing ^{a,b,c} , Yi Yang ^{a,b,c,1,*}
6	^a Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi,
7	330004,China
8	^b Yangtze Delta Drug Advanced Research Institute, Haimen, Jiangsu, 226133, China
9	c Biocytogen Pharmaceuticals (Beijing), Beijing 102600, China
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	

^{#:} These authors contributed equally to this work.
* Corresponding authors: Beijing, <u>benny.yang@bbctg.com.cn</u>.
Supplementary Figure: refer to J-STAGE

22 Abstract

CD36 (also known as scavenger receptor B2) is a multifunctional receptor that 23 24 mediates lipid uptake, advanced oxidation protein products, and immunological 25 recognition, and has roles in lipid accumulation, apoptosis, as well as in metastatic 26 colonization in cancer. CD36 is involved in tumor immunity, metastatic invasion, and therapy resistance through various molecular mechanisms. Targeting CD36 has 27 emerged as an effective strategy for tumor immunotherapy. In this study, we have 28 29 successfully generated a novel CD36 humanized mouse strain where the sequences 30 encoding the extracellular domains of the mouse Cd36 gene were replaced with the 31 corresponding human sequences. The results showed that CD36 humanized mice only 32 expressed human CD36, and the proportion of each lymphocyte was not significantly 33 changed compared with wild-type mice. Furthermore, CD36 monoclonal antibody could significantly inhibit tumor growth after treatment. Therefore, the CD36 34 humanized mice represent a validated preclinical mouse model for the evaluation of 35 36 tumor immunotherapy targeting CD36.

37 Keywords: CD36; Colon cancer; Humanized mouse model; Immunotherapy;
38 Monoclonal antibody

- 39
- 40
- 41

- 43

44 Introduction

The transmembrane protein CD36 is a membrane glycoprotein expressed on the cell surface in multiple cell types, including platelets, mononuclear phagocytes, adipocytes, hepatocytes, myocytes, and some epithelia[1]. Clinical studies have found significant upregulation of CD36 expression in tumor tissues of cervical cancer[2, 3], gastric cancer[4], hepatocellular carcinoma[5], and ovarian cancer[6], which promotes tumor growth, metastatic invasion, and therapy resistance of these tumors through CD36-mediated lipid metabolism.[7].

52 CD36 expression was significantly higher in primary Colorectal Cancer (CRC) tumor tissue than in normal colonic mucosa, and 5-year survival was lower in CRC 53 54 patients with high CD36 mRNA expression than in those with low CD36 mRNA 55 expression [8].CD36 is involved in CRC development by promoting proteasomedependent ubiquitination of Glypcian 4 (GPC4) to inhibit the β -catenin/c-myc axis[9]. 56 The non-coding RNA (lncRNA) TINCR was found to inhibit miR-107 expression and 57 58 activate CD36, which further inhibited CRC cell proliferation and promoted CRC cell apoptosis[10]. Inhibition of fatty acid synthase (FASN) was found to upregulate CD36 59 expression in FASN knockout CRC cells and CRC models based on transgenic mice 60 with hetero- and homozygous deletions of FASN, thereby promoting the proliferation 61 62 of CRC cells[8]. CRC with high metastatic potential expresses higher levels of CD36, which promotes CRC metastasis by upregulating MMP28 and increasing E-63 calmodulin cleavage[11]. Lipid droplets (LD) are a common feature of cancer cell 64 adaptation to tumour microenvironment (TME) acidosis and a key driver of increased 65

cancer cell aggressiveness[12]. It was found that acidosis of TME induces plasma membrane transport of CD36 via TGF- β 2, which promotes LD formation and enhances metastasis and invasion of CRC[13]. Therefore, CD36 is closely associated with CRC development, growth, tumor immunity, and metastatic invasion, suggesting that inhibition of CD36 may be necessary to improve the efficacy of FASN-targeted therapy.

Humanized mice include immunodeficient mice xenografted with human cells or 72 tissues as well as mice expressing human gene products[14]. Patient-derived 73 74 xenografts or cell-derived xenografts (PDX/CDX) models based on immune reconstituted mice or target gene humanized mice are the most used for preclinical in 75 76 vivo efficacy evaluation of antibodies for tumor immunotherapy. However, immune 77 reconstituted mice have limitations such as species specificity of histocompatibility complex (MHC) antigens, underdevelopment of the immune system, impaired class 78 switching and affinity maturation of immunoglobulins[15]. Therefore, a murine model 79 80 used to conduct preclinical testing of anti-hCD36 Abs would be an invaluable tool for defining their mechanism of action and potential clinical utility. In this study, we 81 82 described the generation and characterization of the humanized CD36(hCD36) mouse strain and validation of their use in studying CD36-targeting therapies for potential 83 84 application in *in-vivo* anti-tumor activity.

85 Materials and methods

86 Reagents and materials

87 RP23-115H10 (cloned in the pBACe3.6 vector) and CH17-134L21 (cloned in the

4/37

88	pBACGK1.1 vector) were obtained from the BACPAC Resources Center at BACPAC
89	Genomics. ShunRan biology provided MC38 (colon adenocarcinoma) cells, which
90	were cultivated and maintained in Dulbecco's Modified Eagle's medium (DMEM)
91	with 10% fetal bovine serum (FBS) at 37°C and 5% CO ₂ . Antibodies against mouse
92	cell-surface molecules including mCD45-BV510 (clone 30-F11), mGr-1- PerCP
93	(clone RB6-8C5), mCD4-BV421 (clone GK1.5), mF4/80-FITC (clone BM8), mCD4-
94	BV510 (clone RM4-5), mCD8a-PE (clone 53-6.7), mFoxp3-APC (clone FJK-16S),
95	mCD19-FITC (clone 6D5), mTCR βchain- PerCP/Cy5.5 (clone H57-597), mCD11c-
96	BV605 (clone N418), mCD11b-PE (clone M1/70), and mCD11b-V450 (clone V450)
97	were purchased from Biolegend(USA). Antibodies against mouse cell-surface
98	molecules including mCD3-V450 (clone 17A2), mNK1.1-PE-Cy7 (clone PK136),
99	and mTCR ßchain- APC (clone H57-597) were purchased from BD
100	Pharmingen(USA). Antibody against mouse cell-surface molecule CD36 Monoclonal
101	antibody-APC (clone HM36) was purchased from eBioscience. Antibody against
102	human cell-surface molecule hCD36-PE (clone 5-271) was purchased from
103	Biolegend(USA). Other reagents including anti-CD16/32, PE Mouse lgG2a, and κ
104	Isotype Ctrl(FC) Antibody (clone MOPC-173) were purchased from Biolegend(USA).
105	Armenian Hamster lgG Isotype Control-APC (clone eBio299Arm) was purchased
106	from Invitrogen.

107 Animal experiments

108 C57BL/6 mice were purchased from Biocytogen Pharmaceuticals (Jiangsu,109 China) Co., Ltd. Flp mice were purchased from Institute for Laboratory Animal

5 / 37

Resources, NIFDC. CD36 humanized mice (hCD36 mice) were provided by 110 Biocytogen Pharmaceuticals (Beijing, China) Co., Ltd., production license No. SCXK 111 112 (Su) 2021-0003. This study was carried out in strict accordance with the recommendations in the Guide for the Institutional Animal Care and Use Committees 113 114 (IACUC) guidance. All animal studies were performed according to the protocol approved by the animal care and use committee of Biocytogen Pharmaceuticals 115 (Approval number: PS-01-2203022). The SPF barrier facility kept the test animals at 116 a constant temperature of $(22 \pm 2^{\circ}C)$, with a 12 h/12 h light/dark cycle, and were free 117 118 access to food and drink. All surgery was performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering. Mice were euthanized 119 with CO₂ to minimize or alleviate the animals' suffering. 120

121 Construction of the hCD36 targeting vector

On the C57BL/6J genetic background, a partial sequence of mouse exon 4 to a 122 partial sequence of exon 15 of approximately 43 kb was replaced with a partial 123 124 sequence of exon 3 to a partial sequence of exon 14 of approximately 27 kb containing the human CD36 (Fig. 1A). Homology areas, human DNA, an Frt-flanked 125 Neo resistance cassette, and a diphtheria toxin A (DTA) cassette were all included in 126 the construction of the hCD36 targeting vector. The vectors pUNS-Neo-2G and pES-127 Fte were provided by Biocytogen Pharmaceuticals (Beijing, China) Co., Ltd. The 128 mouse and human genomic DNA fragments of A, B, and C were amplified by PCR 129 using DNA derived from Mouse BAC and Human BAC as templates. Primer designs 130 for fragments A, B, and C are shown in Table S1. Intermediate vector 1 (pUNS-Neo-131

132 2G-A1A2B1B2) and intermediate vector 2 (pES-FTe-C1-ORI-C2) were obtained by
133 the Gibson assembly method, respectively. Intermediate vector 1 linearized by SmaI
134 was electroporated into the mouse BAC which was modified by intermediate vector 2
135 to obtain intermediate vector 3 (pES-FTe-LR-RR). Finally, the intermediate vector 3
136 linearized by ScaI was electroporated to the human BAC(with Neo) to form the pES137 Fe-ABC vector (the hCD36 targeting vector).

Generation of humanized CD36 mice

139 The correct targeting vector was transfected into C57BL/6J embryonic stem (ES) 140 cells (Biocytogen Pharmaceuticals (Beijing) Co., Ltd.) by electroporation. G418resistant ES clones were assayed using Southern Blot techniques to confirm the 141 integration of the exogenous gene. The ES clone cells which had correct sequencing 142 143 were injected into BALB/c blastocysts and implanted into pseudo pregnant females to produce F0 chimeric mice. F0 chimeric mice were mated with Flp mice to obtain F1 144 heterozygous mice with the Neo allele deleted. Afterwards, F1 heterozygous mice 145 146 were mated with each other to obtain hCD36 mice (Unless otherwise stated, hCD36 147 mice below refer to homozygous hCD36 mice).

Analysis of the hCD36 targeting vector, the ES cells, and the F1 mice

The hCD36 targeting vectors were subjected to restriction digestion analysis.
These vectors were digested with ScaI (Thermo, FD0434), EcoRV (Thermo, FD0304),
and NcoI (Thermo, FD0574), respectively. The vectors which conformed by the
restriction digestion analysis would be sequenced for confirmation. The G418-

resistant ES clones were subjected to Southern Blot assay. We digested cellular DNA 154 with ScaI(NEB, R3122S) or EcoNI(NEB, R0521S) and hybridized using 2 probes, 155 156 respectively (Restriction enzyme digestion sites are shown in Fig. 1A; primer design of the probes is shown in Table S3). Identification of the DTA cassette in ES positive 157 158 clones by PCR (The primer sequences were shown in Table S2). The ES clone cells which had correct sequencing were used for blastocyst injection. Somatic cells from 159 female WT and F1 mice were collected for genotype identification by PCR (Primer 160 design for genotype identification of F1 mice is shown in Table S4, and the 161 162 identification strategy has been Fig. 1A). Genetic sequencing was performed on key positions of F1 mice screened by PCR. The correctly sequenced F1 mice were used 163 for amplification and preparation of hCD36 mice. 164

Analysis of human CD36 mRNA expression and full-length Sanger sequencing of CDS (Coding DNA sequence) in hCD36 mice

168 Lung tissues of hCD36 mice and WT mice (C57BL/6 mice) were harvested for extracting total RNA using RNAprep Pure Cell / Bacteria Kit (TIANGEN, DP430). 169 170 The mRNA expression of hCD36 and mCD36 was determined using GAPDH as the internal control. Primer annealing temperatures and the number of cycling were set as 171 follows: initial 94 °C for 2 min, followed the first step by 15 cycles of 98 °C for 10 s, 172 67 °C for 30 s, and 68 °C for 30 s, the second step by 25 cycles of 98 °C for 10 s, 173 57 °C for 30 s, and 68 °C for 30 s; an additional extension at 68 °C for 5 min; and 174 finally held at 16 °C. The primer sequences were shown in Table S5. The qualified 175

176 RNA was used for cDNA library construction. The cDNA obtained by reverse
177 transcription was amplified by RT-PCR. Primer annealing temperatures and the
178 number of cycling were set the same as for the amplification of *CD36* mRNA. Finally,
179 qualified cDNA library was sequenced by the company GENEWIZ.

180 Protein expression analysis of CD36 and 181 immunophenotyping in hCD36 mice

CD36 expression was examined in bone marrow derived from WT mice and 182 heterozygous hCD36 mice, and hCD36 mice (peritoneal exudative macrophages) 183 184 using anti-mouse CD36 antibody-APC (Biolegend, 102611) and anti-mouse CD36-PE (eBioscienceTM, 17-0362-82). And hCD36 was detected with an anti-human CD36 185 antibody (Biolegend, 336205) in peritoneal exudative macrophages. We analyzed the 186 187 expression of CD36 on immune cells in the blood of WT mice and hCD36 mice using flow cytometry. ACK lysis buffer (Beyotime, China) was first added to the 188 anticoagulated blood to remove red blood cells. These cells were then co-incubated 189 190 with a mixture of LD-NIR (Biolegend, USA) and anti-mCD16/32 (Biolegend, USA, clone 93) respectively for 10 min at 4°C for deadwood staining and blocking of non-191 192 specific binding. Finally, immune cells in these cell suspensions were stained at 4°C. After each staining, cells were washed with PBS to remove unbound labeled 193 194 antibodies. After staining, multicolor flow cytometry of the cells was performed using Attune NxT (Thermo Fisher Scientific, USA), and analysis of the data was performed 195 using FlowJo 10. We further analyzed the development, differentiation, and 196 distribution of immune cells in the spleen, lymph nodes, and blood of WT mice and 197

hCD36 mice, respectively. The spleen cell suspensions and lymph node cellsuspensions were processed and analyzed with the same procedure as anticoagulatedblood.

201

Routine mouse blood test

Peripheral blood of female WT and hCD36 mice (n=8, 6-8 weeks old) was 202 collected into EDTA blood collection tubes after anesthesia with sodium pentobarbital. 203 The counts of red blood cells (RBC), white blood cells (WBC), neutrophils (NEUT#), 204 lymphocytes (LYMPH#), monocytes (MONO#), hemoglobin (HGB), and platelets 205 206 (PLT) in the peripheral blood of mice were determined using a fully automated modular blood fluid analyzer (Sysmes, XN-1000); the pressure of red blood cells 207 (HCT), the mean red blood cell volume (MCV) and red blood cell distribution width 208 209 (RDW); mean platelet volume (MPV), hemoglobin content (MCH) and mean hemoglobin concentration (MCHC). 210

211 Biochemical examination of mouse peripheral blood

212 Peripheral blood of female WT and hCD36 mice (n=8, 6-8 weeks old) was 213 collected into heparin collection tubes after anesthesia with sodium pentobarbital, and 214 the supernatant was collected after centrifugation. The concentrations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase 215 216 (ALP), albumin (ALB), glucose (GLU), urea (UREA), creatinine (CREA), total cholesterol (TC), triglycerides (TG), total protein (TP), alkaline phosphatase (ALP), 217 serum amylase (AMY), phosphorus (P), creatine kinase (CK), high-density 218 lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) in the peripheral blood of 219

220 mice were determined using a fully automatic biochemical analyzer (Hitachi, 3110).

221 In vivo efficacy evaluation of CD36 monoclonal antibody

222 Six- to eight-week-old humanized female hCD36 mice were housed in the specific-pathogen-free (SPF) barrier facility of the Animal Center of Biocytogen 223 Pharmaceuticals (Beijing) Co., Ltd. in the individually ventilated cage. The 224 experimental animals were acclimatized for 7 days before being used in experiments. 225 5E5 Murine colon cancer MC38 cells were subcutaneously implanted into hCD36 226 227 mice on the right dorsal side in a volume of 0.1ml per mouse. The tumor volume was 228 measured once a day from day 0 after inoculation, and the tumor volume was calculated by the formula: $0.5 \times \log \text{ diameter} \times \text{ short diameter}^2$. Mice were randomly 229 grouped as tumors reached an average of 100 mm³. Then mice were treated with PBS, 230 231 anti-CD36 chimeric human-mouse monoclonal antibody (subsequently abbreviated as 1G04 which was made in house.) through i.p. injection. The antibody was 232 administered three times a week for six consecutive doses. Animal well-being and 233 234 behaviors were monitored once a day during the experiment process. We measured the tumor volume and weight of the animals twice weekly. The animals were 235 euthanized at the end of the experiment, and the relative tumor growth inhibition (TGI) 236 rate was measured. The antitumor efficacy is expressed as tumor growth inhibition in 237 terms of tumor volume (TGI_{TV}). The TGI_{TV} in percent was calculated as below: 238 $TGI_{TV}(\%) = [1 - (T_i - T_0)/(C_i - C_0)] \times 100$; Where T_i = mean tumor volume of the 239 drug-treated group on the final day of the study, T_0 = mean tumor volume of the drug-240 treated group on the first dosing day, C_i = mean tumor volume of the control group on 241

the final day of the study, C_0 = mean tumor volume of the control group on the first dosing day.

244 Statistical analyses

Mean±SEM was used to assess the results. Statistical analysis was performed using SPSS 19 and graphical plotting of data was performed using Graph Pad Prism 7 software. Student's t-test and one-way analysis of variance (ANOVA) were used for the comparison of all data. Statistical significance was required to meet a *P* value <0.05. * *p* <0.05, ** *p* < 0.01, *** *p* < 0.001, and **** *p* < 0.0001.

250 **Results**

251 Generation of humanized CD36 heterozygous mouse model

The fragment size after ScaI digestion should be 30,955 bp, 8094 bp, 5618 bp, 252 253 2801 bp, 856 bp, and 96 bp. The fragment size after EcoRV digestion should be 40,001 bp, 4020 bp, 2203 bp, 1427 bp, 540 bp, and 229 bp. The fragment size after 254 NcoI digestion should be 22015 bp, 10334 bp, 5337 bp, 3259 bp, 2678 bp, 1841 bp, 255 256 910 bp, 758 bp, 571 bp, 378 bp, and 339 bp. As shown in Fig. 1B, the hCD36 targeting vector No. 17 met the requirements of restriction digestion analysis and was 257 then sequenced to confirm (data not shown). Southern Blot was performed on G418-258 resistant ES clones and the results showed that No. 1D02, No. 1D06, No. 2B04, No. 259 260 2D02, No. 2D03, No. 3F05, No. 1D08, and No. 2E06 were positively confirmed (Fig. 1C). Sequenced of these positive clones showed that the four positive clones No. 261 2B04, No. 1D08, No. 2D03, and No. 3F05 were free of random insertions (data not 262 shown). Finally, the correct ES-positive clones were injected into BALB/c blastocysts 263

and then implanted into pseudo pregnant females to produce F0 chimeric mice. F0 264 chimeric mice were mated with Flp mice to obtain F1 heterozygous mice with the 265 Neo allele deleted. Genotype identification of F1 mice somatic cells by PCR showed 266 that the two mice No. F1-01 and No. F1-02 were both positive heterozygous mice 267 (Fig. 1D). The maternal ES positive of mice No. F1-01 and F1-02 was No. 2D03, and 268 PCR identified No. 2D03 without the DTA cassette (S1 Fig). In addition, one of the 269 F1 mice which was sequenced at the critical position showed no random insertion (S4 270 Fig). The F1 mice No. F1-01 and No. F1-02 were used for the amplification and 271 272 preparation of hCD36 mice.

273 Generation of hCD36 mouse model

The hCD36 mice established based on the C57BL/6 mouse background were 274 275 obtained by replacing exons 4 to part of 15 of the extracellular domains of CD36 encoding the mouse with human exons 3 to 14 (Fig. 1A). The hCD36 mice were 276 generated by mating F1 mice with each other. The full-length Sanger sequencing data 277 278 of the CD36 CDS in hCD36 mice showed that the sequence of exon 4 to exon 15 of 279 the mouse CD36 gene was correctly replaced with the sequence of exon 3 to exon 14 of the human CD36 gene in hCD36 mice (S5 Fig). We assumed that homozygous 280 hCD36 mice only express hCD36, while heterozygous hCD36 mice express both 281 282 hCD36 and mCD36. We detected CD36 expression in the bone marrow of heterozygous hCD36 mice and found that it expressed both mCD36 and hCD36, 283 while WT mice only expressed mCD36 (results not shown). We analyzed the 284 expression of CD36 mRNA in the lung tissue of hCD36 mice by RT-PCR. The results 285

revealed that only hCD36 mRNA was detected in hCD36 mice compared to WT mice
(Fig. 2A). We then examined hCD36 protein expression in peritoneal exudative
macrophages of hCD36 mice and found that only mCD36 was detected in WT mice,
while only hCD36 was detected in hCD36 mice (Fig. 2B).

290 We further evaluated the expression pattern of hCD36 on different immune populations in the humanized mice and compared it with the expression of hCD36 291 protein in humans. Similar to the pattern found on human immune cells[16-20], 292 hCD36 protein is expressed on macrophages, monocytes, granulocytes, DCs, NK 293 294 Cells, B cells, CD8+ T cells, CD4+ T cells, and Tregs of hCD36 mice (Fig. 2C). The regulatory region of the CD36 gene was not replaced in hCD36 mice, and the 295 expression of CD36 protein on peripheral blood immune cells of hCD36 mice should 296 297 be consistent with that of WT mice. However, our results showed that hCD36 protein expression was elevated on macrophages, monocytes, granulocytes, DCs, NK cells, B 298 cells, CD8+ T cells, CD4+ T cells, and Tregs in hCD36 mice compared to mCD36 299 300 protein expression in WT mice (Fig. 2C). Actually, it has been shown that introns can enhance transcript levels in eukaryotes by elevating mRNA accumulation and 301 302 affecting transcription speed, nuclear export, and transcript stability[21]. Transgenic mice carrying the human histone H4 promoter had more extensive tissue expression in 303 304 response to stimulation with the mixed introns compared to controls[22]. Tissuespecific expression of the mouse CD21 gene is closely associated with the 5'1.6kb 305 region within intron 1 of the CD21 gene[23]. In addition, introns that can be 306 efficiently spliced may make very different contributions in the context of different 307

cells, different promoters, or different coding sequences[21]. It is therefore reasonable
to suspect that the partial sequence of exon 3 to exon 14 of the human CD36 gene
may contain introns that enhance the expression of hCD36 protein in hCD36 mice.
Altogether, our data demonstrate that the hCD36 mice recapitulate the expression
pattern of the human CD36 on peripheral blood mononuclear cells (PBMCs),
supporting the use of this mouse to study human CD36 as the therapeutic target for
immune therapy.

315 Analysis of leukocyte subpopulations and T cell 316 subpopulations

To further investigate whether the humanization of CD36 could affect the 317 immune system of mice, we next analyzed the leukocyte subpopulation in the spleen 318 of hCD36 mice by flow cytometry. As shown in Figs 3A and B, the development, 319 differentiation, and distribution of leukocyte subpopulations such as T cells, B cells, 320 natural killer cells (NK), monocytes, dendritic cells (DC), and mononuclear 321 322 macrophages in the spleen of hCD36 mice were not statistically different from WT 323 mice (p > 0.05). T cell subpopulations such as CD4+ T cells, CD8+ T cells, and Treg 324 cells in the spleen of hCD36 mice were also similar to WT mice (p > 0.05) (Figs 3C and D). In addition, we further analyzed the development, differentiation, and 325 326 distribution of leukocyte subpopulations and T cell subpopulations in the blood and lymph nodes of hCD36 mice. We found that leukocyte subpopulations and T cell 327 328 subpopulations of blood and lymph nodes were not significantly changed as compared with WT mice (p > 0.05). (S2 and S3 Figs). Collectively, these results indicate that the 329

development, differentiation, and distribution of immune cells in hCD36 mice are notimpaired, and hCD36 mice possess normal immune functions.

332 Analysis of routine blood and blood biochemistry

CD36 expression in non-immune cells mainly includes platelets, immature erythrocytes, podocytes, skeletal muscle cells, adipocytes, and cardiomyocytes[24]. We next examined whether blood cell composition and morphology were affected by CD36 humanization. As shown in Fig. 4A, hCD36 mice were measured similarly to WT mice, indicating that humanization does not alter hematocrit composition and morphology.

Notably, cardiomyocyte-specific CD36 knockout mice exhibited a significant 339 reduction in cardiac FA uptake and intramyocardial TG content[25]. Hepatocyte-340 specific CD36 knockout mice exhibited high-fat diet-induced hepatic steatosis and 341 diminished insulin resistance, and blood biochemical assays suggested a progressive 342 decrease in AST and ALT[26]. CD36 also contributes to the progression of chronic 343 344 kidney disease by mediating renal lipid deposition, lipid peroxidation, and endocytosis of multiple substances by renal cells[27]. Endothelial cell-specific CD36 345 knockout mice also exhibit elevated triglyceride levels, reduced total cholesterol, and 346 increased glucose clearance[28]. These studies suggest that CD36 is closely 347 348 associated with the normal function and disease development of organs such as the heart, liver, and kidney in mice. We next evaluated the effect of CD36 humanization 349 350 on the normal function of these organs in hCD36 mice. There was no difference in biochemistry parameters between hCD36 mice and WT mice, indicating that 351

352 humanization does not alter the health of organs such as the heart, liver, and kidney353 (Fig. 4B).

354 In vivo efficacy evaluation of CD36 monoclonal antibody

Currently, there are no antibodies that specially recognize hCD36 other than the 355 1G04 (patent WO2021176424A1) which cross-recognizes the mCD36 and hCD36. 356 1G04 is currently in the biological testing phase. This antibody is an anti-CD36 357 human-mouse chimeric monoclonal antibody that was obtained by replacing the Fc 358 region of the mouse antibody ONA-0-V1 with the Fc region of the human antibody 359 360 lgG1[29]. The Fc region of 1G04 contains L234A/L235A (LALA) modification. The results of the proprietary ELISA assay showed that 1G04 exhibited similar affinity 361 and binding properties for hCD36 and mCD36[29]. 1G04 can inhibit tumor growth by 362 363 blocking the CD36-mediated lipid uptake of tumor cells[29]. To assess the crossreactivity of 1G04, we examined its binding to mCD36/hCD36 in vitro by flow 364 cytometry, and we confirmed that the 1G04 demonstrated comparable binding to both 365 366 mCD36 and hCD36 (Fig. 5B). It was reported that 1G04 exhibited significant tumor 367 inhibition in either C57BL/6 mice inoculated with MC38 cells or BALB/c nude mice inoculated with HCT-116 cells[29]. To demonstrate that the enhancement of anti-368 tumor immunity could be modulated by therapeutic blockade of CD36, hCD36 mice 369 370 with established WT MC38 tumors were treated with 1G04 at 3mg/kg or 10mg/kg. Compared with the control group, 1G04 treatments at the dosage of 10mg/kg and 371 372 3mg/ kg achieved significant TGI at 47.3% and 31.6%, respectively (Fig. 5C). And neither the low-dose group nor the high-dose group induced significant body weight 373

change in the experimental animals compared with the control group (p > 0.05)(Fig. 5D). Therefore, we successfully validated the inhibitory effect of 1G04 on colon cancer tumor growth in hCD36 mice. The hCD36 mice could be used for preclinical *in vivo* efficacy evaluation of anti-hCD36 antibody.

378 **Discussion**

CD36 is actively involved in the growth, tumor immunity, metastatic invasion, 379 and drug resistance of various tumors through lipid metabolism[30]. Blocking CD36-380 mediated lipid metabolism is a strategy that can be considered for future tumor 381 382 therapy. However, a lack of mouse models that faithfully recapitulate the human expression patterns of hCD36 has hindered progress in evaluating the anti-tumor 383 effect of hCD36-targeting antibodies in vivo. Here, we developed a hCD36 mouse 384 385 model by replacing the extracellular region of mCD36 with the human counterpart, which allowed for testing the therapeutic potential of anti-hCD36-targeting antibody. 386 Expression of hCD36 was only detectable in hCD36 mice while mCD36 was not 387 388 expressed. Next, the distribution of lymphocyte subpopulations in the blood, lymph nodes, and spleen of the hCD36 mice was consistent with that of WT mice, indicating 389 that humanized mice did not affect the distribution of lymphocyte subpopulations. 390 Furthermore, the immune function, blood cell composition and morphology, and vital 391 392 organ function were not affected by humanization.

We further validated the inhibitory effect of 1G04 on colon cancer tumors in
hCD36 mice. Our data showed that targeting the hCD36 with blocking antibody was a
promising strategy to enhance antitumor immunity and reduce tumor burden.

18/37

However, most of the development of CD36 antibodies is in the preclinical and 396 biological testing stage, and there are few CD36 antibodies whose clinical indications 397 398 are used for tumor immunotherapy. Although it is a limitation of validation of the hCD36 mice due to lacking of specially recognizing human CD36 monoclonal 399 400 antibodies, this implies that there is much deeper research on CD36 to develop human-specific CD36 antibodies. In addition, with the emergence of drugs utilized for 401 metabolic inflammatory syndrome and the cardiovascular class of targeting CD36 402 403 antibodies in the future, hCD36 mice could also be able to further accelerate the 404 development of this field of antibodies from preclinical to clinical progress. In fact, the use of humanized mice in human metabolic inflammatory syndrome and 405 cardiovascular disease research includes the exploration of mechanisms of action, 406 407 preclinical pharmacodynamic and toxicological evaluation, and target discovery[14, 31-33]. Therefore, hCD36 mice could also further discover the potential association 408 of CD36 with different targets in several diseases, thus facilitating drug development 409 for these diseases. 410

411 **Conclusion**

We have successfully generated hCD36 mice by a genetic engineering approach
and validated the inhibitory effect of 1G04 on colon cancer tumor growth in these
mice. The hCD36 mice should be a valuable preclinical mouse model for the
evaluation of tumor immunotherapy targeting CD36.

416 Authorship contributions

417 Xiulong Xie: Validation, Formal analysis, Writing - Original Draft. Zhenlan Niu:

19/37

418 Resources, Analysis and interpretation of data, Writing- Reviewing and Editing.
419 Linlin Wang: Conception and design of the study, Acquisition of data, Analysis and
420 interpretation of data. Xiaofei Zhou: Project administration. Xingyan Yu:
421 Investigation. Hongyan Jing: Visualization. Yi Yang: Funding acquisition, Writing422 Reviewing and Editing.

423 Sources of Founding

424 This work was supported by Shandong Province Antibody Drug Innovation and

425 Entrepreneurship Community [grant numbers 2021CXCYGTT16].

426 **References**

427 1. Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and
428 behavior. Sci Signal. 2009;2(72):re3. doi: 10.1126/scisignal.272re3.

- 429 2. Deng M, Cai X, Long L, Xie L, Ma H, Zhou Y, et al. CD36 promotes the epithelial-mesenchymal transition and
 430 metastasis in cervical cancer by interacting with TGF-β. J Transl Med. 2019;17(1):352. doi: 10.1186/s12967-019431 2098-6.
- 432 3. Yang P, Su C, Luo X, Zeng H, Zhao L, Wei L, et al. Dietary oleic acid-induced CD36 promotes cervical cancer

433 cell growth and metastasis via up-regulation Src/ERK pathway. Cancer Lett. 2018;438:76-85. doi:

434 10.1016/j.canlet.2018.09.006.

435 4. Pan J, Fan Z, Wang Z, Dai Q, Xiang Z, Yuan F, et al. CD36 mediates palmitate acid-induced metastasis of

- **436** gastric cancer via AKT/GSK- $3\beta/\beta$ -catenin pathway. J Exp Clin Cancer Res. 2019;38(1):52. doi: 10.1186/s13046-**437** 019-1049-7.
- 438 5. Luo X, Zheng E, Wei L, Zeng H, Qin H, Zhang X, et al. The fatty acid receptor CD36 promotes HCC
- 439 progression through activating Src/PI3K/AKT axis-dependent aerobic glycolysis. Cell Death Dis. 2021;12(4):328.
 440 doi: 10.1038/s41419-021-03596-w.
- 441 6. Ladanyi A, Mukherjee A, Kenny HA, Johnson A, Mitra AK, Sundaresan S, et al. Adipocyte-induced CD36
- 442 expression drives ovarian cancer progression and metastasis. Oncogene. 2018;37(17):2285-301. doi:
- **443** 10.1038/s41388-017-0093-z.
- 444 7. Wang J, Li Y. CD36 tango in cancer: signaling pathways and functions. Theranostics. 2019;9(17):4893-908. doi:
 445 10.7150/thno.36037.
- 446 8. Drury J, Rychahou PG, He D, Jafari N, Wang C, Lee EY, et al. Inhibition of Fatty Acid Synthase Upregulates
- 447 Expression of CD36 to Sustain Proliferation of Colorectal Cancer Cells. Front Oncol. 2020;10:1185. doi:
- **448** 10.3389/fonc.2020.01185.
- 449 9. Fang Y, Shen ZY, Zhan YZ, Feng XC, Chen KL, Li YS, et al. CD36 inhibits beta-catenin/c-myc-mediated
- 450 glycolysis through ubiquitination of GPC4 to repress colorectal tumorigenesis. Nat Commun. 2019;10(1):3981. doi:
 451 10.1038/s41467-019-11662-3.
- 452 10. Zhang X, Yao J, Shi H, Gao B, Zhang L. LncRNA TINCR/microRNA-107/CD36 regulates cell proliferation

- 453 and apoptosis in colorectal cancer via PPAR signaling pathway based on bioinformatics analysis. Biol Chem.
- **454** 2019;400(5):663-75. doi: 10.1515/hsz-2018-0236.
- 455 11. Drury J, Rychahou PG, Kelson CO, Geisen ME, Wu Y, He D, et al. Upregulation of CD36, a Fatty Acid
- 456 Translocase, Promotes Colorectal Cancer Metastasis by Increasing MMP28 and Decreasing E-Cadherin
- **457** Expression. Cancers (Basel). 2022;14(1). doi: 10.3390/cancers14010252.
- 458 12. Schwartsburd P. Lipid droplets: could they be involved in cancer growth and cancer-microenvironment
- **459** communications? Cancer Commun (Lond). 2021;42(2):83-7. doi: 10.1002/cac2.12257.
- 460 13. Corbet C, Bastien E, Santiago de Jesus JP, Dierge E, Martherus R, Vander Linden C, et al. TGFbeta2-induced
- 461 formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells. Nat
- **462** Commun. 2020;11(1):454. doi: 10.1038/s41467-019-14262-3.
- 463 14. Stripecke R, Munz C, Schuringa JJ, Bissig KD, Soper B, Meeham T, et al. Innovations, challenges, and
- 464 minimal information for standardization of humanized mice. EMBO Mol Med. 2020;12(7):e8662. doi:
- **465** 10.15252/emmm.201708662.
- 466 15. Allen TM, Brehm MA, Bridges S, Ferguson S, Kumar P, Mirochnitchenko O, et al. Humanized immune system
- 467 mouse models: progress, challenges and opportunities. Nat Immunol. 2019;20(7):770-4. doi: 10.1038/s41590-019468 0416-z.
- 469 16. Y C, J Z, WG C, RL S. CD36, a signaling receptor and fatty acid transporter that regulates immune cell
- 470 metabolism and fate. J Exp Med. 2022;219(6):e20211314. doi: 10.1084/jem.20211314.
- 471 17. CL-G, MPC, ALG, JLF, DB, JF. A simple method for detection of major phenotypic abnormalities in
- 472 myelodysplastic syndromes expression of CD56 in CMML. Haematologica. 2007;92(6).
- 473 18. He C, Wang S, Zhou C, He M, Wang J, Ladds M, et al. CD36 and LC3B initiated autophagy in B cells
- 474 regulates the humoral immune response. Autophagy. 2021;17(11):3577-91. doi: 10.1080/15548627.2021.1885183.
- 475 19. Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, et al. Immature dendritic cells
- 476 phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J
- 477 Exp Med. 1998;188(7):1359-68. doi: 10.1084/jem.188.7.1359.
- 478 20. Chen Q, Ye W, Jian Tan W, Mei Yong KS, Liu M, Qi Tan S, et al. Delineation of Natural Killer Cell
- 479 Differentiation from Myeloid Progenitors in Human. Sci Rep. 2015;5:15118. doi: 10.1038/srep15118.
- 480 21. Shaul O. How introns enhance gene expression. The international journal of biochemistry & cell biology.
- **481** 2017;91(Pt B):145-55. doi: 10.1016/j.biocel.2017.06.016.
- 482 22. Choi T, Huang M, Gorman C, Jaenisch R. A generic intron increases gene expression in transgenic mice.
- **483** Molecular and cellular biology. 1991;11(6):3070-4. doi: 10.1128/mcb.11.6.3070-3074.1991.
- 484 23. Hu H, Martin BK, Weis JJ, Weis JH. Expression of the murine CD21 gene is regulated by promoter and
 485 intronic sequences. J Immunol. 1997;158(10):4758-68.
- 486 24. Zhang X, Fan J, Li H, Chen C, Wang Y. CD36 Signaling in Diabetic Cardiomyopathy. Aging Dis.
- **487** 2021;12(3):826-40. doi: 10.14336/ad.2020.1217.
- 488 25. Nagendran J, Pulinilkunnil T, Kienesberger PC, Sung MM, Fung D, Febbraio M, et al. Cardiomyocyte-specific
- 489 ablation of CD36 improves post-ischemic functional recovery. J Mol Cell Cardiol. 2013;63:180-8. doi:
- **490** 10.1016/j.yjmcc.2013.07.020.
- 491 26. Zeng H, Qin H, Liao M, Zheng E, Luo X, Xiao A, et al. CD36 promotes de novo lipogenesis in hepatocytes
- 492 through INSIG2-dependent SREBP1 processing. Mol Metab. 2022;57:101428. doi:
- 493 10.1016/j.molmet.2021.101428.
- 494 27. Yang X, Okamura DM, Lu X, Chen Y, Moorhead J, Varghese Z, et al. CD36 in chronic kidney disease: novel
- 495 insights and therapeutic opportunities. Nat Rev Nephrol. 2017;13(12):769-81. doi: 10.1038/nrneph.2017.126.
- 496 28. Daquinag AC, Gao Z, Fussell C, Immaraj L, Pasqualini R, Arap W, et al. Fatty acid mobilization from adipose

- 497 tissue is mediated by CD36 posttranslational modifications and intracellular trafficking. JCI Insight. 2021;6(17).
- **498** doi: 10.1172/jci.insight.147057.
- 499 29. AZNAR BS, DE FM, SALVADOR G, VALERIE V, BEA M. ANTI-CD36 ANTIBODIES AND THEIR USE500 TO TREAT CANCER.
- 501 <u>https://worldwideespacenetcom/publicationDetails/biblio?II=0&ND=3&adjacent=true&locale=en_EP&FT=D&dat</u>
- **502** <u>e=20210910&CC=WO&NR=2021176424A1&KC=A1</u>. US2021.
- 503 30. Ruan C, Meng Y, Song H. CD36: an emerging therapeutic target for cancer and its molecular mechanisms. J
 504 Cancer Res Clin Oncol. 2022;148(7):1551-8. doi: 10.1007/s00432-022-03957-8.
- 505 31. Ye W, Chen Q. Potential Applications and Perspectives of Humanized Mouse Models. Annual review of animal
- **506** biosciences. 2022;10:395-417. doi: 10.1146/annurev-animal-020420-033029.
- 507 32. Scheer N, Wilson ID. A comparison between genetically humanized and chimeric liver humanized mouse
- 508 models for studies in drug metabolism and toxicity. Drug Discov Today. 2016;21(2):250-63. doi:
- **509** 10.1016/j.drudis.2015.09.002.
- 510 33. Walsh NC, Kenney LL, Jangalwe S, Aryee KE, Greiner DL, Brehm MA, et al. Humanized Mouse Models of
- **511** Clinical Disease. Annu Rev Pathol. 2017;12:187-215. doi: 10.1146/annurev-pathol-052016-100332.

513 Fig 1. Characterization of the humanized CD36 heterozygous mouse model. A:

- 515 hCD36 targeting vector No. 17; C: Southern Blot analysis of ES positive clones; D:
- 516 PCR identification of the genotypes of F1 mice.

⁵¹⁴ Generation of the hCD36 mouse strain; B: Restriction digestion analysis of the

517

Fig 2. Characterization of the hCD36 mouse model. A: Expression of CD36
mRNA in hCD36 mice; B: Expression of CD36 on peritoneal exudative macrophages
in hCD36 mice (n=1,7-week-old); C: Expression of CD36 on immune cells in the
blood of WT mice and hCD36 mice(n=3,8-week-old).

523 Fig 3. Analysis of immune cells subpopulation in the spleen of hCD36 and WT

524 mice(n=3,8-week-old). A, B: The frequency of T cells, B cells, NK cells, Monocyte,

525 DC cell, and macrophage cells in mCD45 cells. C, D: The frequency of CD4+ T cells,

526 CD8+ T cells, and Treg cells in mCD3 cells.

527 Fig 4. Analysis of complete blood count and blood biochemical in hCD36 and WT

528 mice (n=8,6~8-week-old). A: Analysis of complete blood count in mice; B: Analysis

529 of blood biochemistry in mice.

530 Fig 5. Validation of the efficacy of 1G04 in hCD36 mice (n=6,6~8-week-old). A:

531 Design of *in vivo* drug efficacy programs; B: Analysis of the *in vitro* binding of 1G04

- 532 to CD36. C: Tumor volume measurement during the treatment. D: Body weight
- 533 record during the treatment.

534 Fig 6. Graphical abstract.

535		
536		
537		
538		
539		
540		
541		
542		
543		
544		
545		

547 Supplementary data

548 The following are the Supplementary data to this article:

549

Table S1. Primer designs for fragments A, B, and C

Primer	Sequence (5'-3')	Product	Template
		size(bp)	
A1-F	CCTAAGAATACTCTACGGTCACATACCCCCGGG		
	TGGAGAAACTAGATAGGGCGTG	593	Mouse
A1-R	GATAAGCAGGTCTCCGACTGGCATGAGAATGCCT		BAC
	CCAAAC		
A2-F	ATTCTCATGCCAGTCGGAGACCTGCTTATCCAGA		
	AGAC	342	Human
A2-R	TCCGATTCGCCAGATGATAAGGAACAGTACTAAC		BAC
	ATGCATACCTGTAGACAGC		
B1-F	AACTCCGAGCCCTTCCACCAGTACTCTATCTGGC		
	ACTTAATTGCC	277	Human
B1-R	CCATGCCAAGGAGGTTTATTTTTCCAGTTACTTG		BAC
	AC		
B2-1-F	CTGGAAAAATAAACCTCCTTGGCATGGTAGAGAT		
	GGCCT	735	Mouse
B2-1-R	CTAATATATAAAAAGGCGTGTACAATTTTGCCAA		BAC
	AACTC		
B2-2-F	TTGTACACGCCTTTTTATATATAGTGACCACTGT		
	G	590	Mouse
B2-2-R	GAAATGTCAGAGCCAGCGTCTTGCCCGGGTGAC		BAC
	ACAAATGATCCAGAAC		
C1-F	AATTTCACACAGGAGGCGCGCCTCGAGCAACTG		
	AATCCTTACCATCTTCTGCC	322	Mouse
C1-R	GAGGGCTTACCGCTTACTAGTCACGTGTCTACAT		BAC
	CCCAGCCACATCACA		
C2-F	GGTTTCCTTGTCGTAGATCTCACGTGTTCTATCTG		
	AGATTCTGTGTCC	542	Mouse
C2-R	GTAAACTCCTCTTCAGACCTGGCGGCCGCCCAC		BAC
	ATGCAGTGCAGAAGGGTGCA		

PrimerSequence (5'-3')Product size(bp)DTA-F1CTGGTACACAAGGAAATTATGACGATG515DTA-R1GGTAGTTTGTCCAATTATGTCACACC515DTA-F2GAGGCGTGGTCAAAGTGACGTATCC344DTA-R2CCTGACACGATTTCCTGCACAGGC515

552 Table S2. Primer design for identification of DTA cassette in ES positive clones

553

554

555

Table S3. Primer design for Southern Blot confirmation of homologous

	recombination in ES cells
Probe	Sequence (5'-3')
5'Probe-F	5'-AGATAACAGGCTGGCCTGGAGAAAA -3'
5'Probe-R	5'-GTTGCCCAATACCATAATTTGGAAAAGT-3'
3'Probe-F	5'-CTTTAGCACCAGGTGTGCGTCAGTA-3'
3'Probe-R	5'-GGTCATGCACCAACATCCACAAC-3'

556

557

Table S4. Primer design for genotype identification of F1 mice

Primer	Sequence (5'-3')	Product size(bp)
WT-F	AACCAGTGCTCTCCCTTGATTCTG	WT: 504
WT-R	AAAGCATGCCAGTCTACTCCAGA	
WT-F	AACCAGTGCTCTCCCTTGATTCTG	Mut: 315
Mut-R	GTCGCATCATATAGAGTTGCAGTGG	
Frt-F	TTGCCATGGATCATAGCTGTAGC	Mut-Flp: 490
Frt-R	AGTTACATATGGCTGGCGGCTGCT	(Deleted Neo)
Flp-F2	GACAAGCGTTAGTAGGCACATATAC	Mut: 325
Flp-R2	GCTCCAATTTCCCACAACATTAGT	

558

Primer	Sequence (5'-3')	Product size(bp)
mCD36-F	AAACCCAGATGACGTGGCAA	WT: 634
mCD36-R	TTCAGATCCGAACACAGCGT	
hCD36-F	AATGTAACCCAGGACGCTGA	Mut: 463
hCD36-R	GTGGAAATGAGGCTGCATCTG	
GAPDH-F	TCACCATCTTCCAGGAGCGAGA	WT: 479
GAPDH-R	GAAGGCCATGCCAGTGAGCTT	

560 Table S5. Primer design for CD36 mRNA expression analysis in hCD36 mice

561

563 S1 Fig. PCR identification of DTA cassette in targeting vectors and ES-positive

564 clones No. 2D03.

565

562

566

568 S2 Fig. Analysis of immune cells subpopulation in the blood of hCD36 and WT

569 mice(n=3,8-week-old). A, B: The frequency of T cells, B cells, NK cells, Monocyte,

570 DC cell, and macrophage cells in mCD45 cells. C, D: The frequency of CD4+ T cells,

572

573

575 S3 Fig. Analysis of immune cells subpopulation in the lymph nodes of hCD36

and WT mice(n=3,8-week-old). A, B: The frequency of T cells, B cells, NK cells in

- 577 mCD45 cells. C, D: The frequency of CD4+ T cells, CD8+ T cells, and Treg cells in
- 578 mCD3 cells.

	<pre>iatgggctgtgatcggaactgtgggctcattgctggagctgttattggtgcagtcctggctgtgtttggaggcattctcatgccagtcGGAGACCTGCTTATCCAG</pre>
	: tacccgacactagccttgacacccgagtaacgacctcgacaataaccacgtcaggaccgacacaaacctccgtaagagtacggtcagCCTCTGGACGAATAGGTC
	<u>1</u> , , , 5, , , , 10, , , , 15, , , , 20, , , , 25, , , , , 30, , , , 35 M G C D R N C G L I A G A V I G A V L A V F G G I L M P V G D L L I Q
	Cd36 CD36 →
	atgggctgtgatcggaactgtgggctcattgctggagctgttattggtgcagtcctggctgtgtttggaggcattctcatgccagtcGGAGACCTGCTTATCCAG,
	GGGCTGTGATCGGA-CTGTGGGCTCATTGCTGGAGCTGTTATTGGTGCAGTCCTGGCTGTGTTTGGAGGCATTCTCATGCCAGTCGGAGACCTGCTTATCCAG
	Capan Manager and Manag
588	20 30 40 50 60 70 80 90 100 110
	TATCCAGAAGACAATTAAAAAGGTACAAGTAGTCCAAAGAATATGCCTTCTCATTTTGATTGA
	35
	CD36 →
	TATCCAGAAGACAATTAAAAAGGTACAAGTAGTCCAAAGAATATGCCTTCTCATTTTGATTGA
	TATCCAGAAGACAATTAAAAAGGTACAAGTAGTCCAAAGAATATGCCTTCTCATTTTGATTGA
589	<u>110 120 130 140 150 160 170 180 190 200 210</u>
	CTTTATATTTCATCCTAACTCCTAATTTTCTATCTTCACATAAACCTAATTATCAACCACTCCAACTCTATATCATC
	GAAATATAAAGTACCATTGACGATTAAAACATAGAAACTGTATTTCCATTAATACTTGGTGACGTTGAGATATACTACGCTGAA
	CD36 →
	CD36 →
	CTTTATATTTCATGGTAACTGCTAATTTTGTATCTTTGACATAAAGGTAATTATGAACCACTGCAACTCTATATGATGCGACTT
	CTTTATATTTCATGGTAACTGCTAATTTTGTATCTTTGACATAAAGGTAATTATGAACCACTGCAACTCTATATGATGCGAC
590	<u>210 220 230 240 250 260 270 280</u>
591	S4 Fig. One of the F1 mice which was sequenced at the critical position showed
	ů ř
592	no random insertion.
502	
593	
504	
394	
505	
575	
596	
070	
597	
598	
598	
598	
598 599	

	aatgggctgtgatcggaactgtgggctcattgctggagctgttattggtgcagtcctggctgtgtttggaggcattctcatgccagtcggagacctgcttatccagaa
	ttacccgacactagcettgacacccgagtaacgacetegacaataaccacgtcaggacegacacaaaacetegtaagagtacggteageetetgacageataggtet 1 - 5
	Cd36 →
	atgggctgtgatcggaactgtgggctcattgctggagctgttattggtgcagtcctggctgtgtttggaggcattctcatgccagtcggagacctgcttatccagaa ATGGGCTGTGATCGGAACTGTGGGGCTCATTGCTGGAGCTGTTATTGGTGCGAGTCCTGGCTGTGTTTGGAGGGCATTCTCATGCCAGTCGGAGACCTGCTTATCCAGAA
(0.0	man man man and man and a second and a secon
600	40 50 60 70 80 90 100 110 120 130 140 cagaagacaattaaaaagcaagttgtcctcgaagaaggtacaattgcttttaaaaattgggttaaaacaggcacagaagtttacagacag
	gtcttctgttaatttttcgttcaacaggagcttcttccatgttaacgaaaatttttaacccaattttgtccgtgttcttcaatgtcgtgtcaaaaacctagaa 35 - 40 - 65 - 70 Gin Lys Thr Ile Lys Lys Gin Val Val Leu Giu Giu Giy Thr Ile Ala Phe Lys Asn Trp Val Lys Thr Giy Thr Glu Val Tyr Arg Gin Phe Trp Ile Phe Asp Val
	$\begin{tabular}{cccccccccccccccccccccccccccccccccccc$
	coos si cagaagacaattaaaaagcaagttgtcctcgaagaaggtacaattgcttttaaaaattgggttaaaacaggcacagaagtttacagacag
601	Сабаадбасааттаалаабсаабттбтсстссбаабааббтасааттбсттттаалааттбббттаалаасабббсасабаабтттасабасабттттббатстттбатбтб
	gtgcaaaatccacaggaagtgatgatgaacagcagcaacattcaagttaagcaaagaggtccttatacgtacagagttcgttttctagccaaggaaaatgtaacccag icacgttttaggtgtccttcactacttgtcgtcgtcgttgtaagttcaattcgtttctccaggaatatgcatgtctcaagcaaaagcaggtccttttacattggtt 70 - 75 - 80 - 85 - 90 - 95 - 100 - 105 Val Gin Asn Pro Gin Giu Val Met Met Asn Ser Ser Asn Ile Gin Val Lys Gin Arg Giy Pro Tyr Thr Tyr Arg Val Arg Phe Leu Ala Lys Giu Asn Val Thr Gin
	Cd36 → Cd36 → 70 , , , , , , , , , , , , , , , , , , ,
	gtgcaaaatccacaggaagtgatgatgaacagcagcaacattcaagttaagcaaagaggtccttatacgtacagagttcgttttctagccaaggaaaatgtaacccag
	GTGCAAAATCCACAGGAAGTGATGATGATGAACAGCAGCAACATTCAAGTTAAGCAAAGAGGTCCTTATACGTACAGAGTTCGTTTTCTAGCCAAGGAAAATGTAACCCAG MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
602	250 260 270 280 290 300 310 320 330 340
)gtoctgogactoctgttgtgtogagaaaggacggtogggttagactoggaggttggaaggttggaagttggaagtgtaagtocaacttgttoccogactgttgaagtgtcaagagttagac 105 110 125 120 Gin Asp Ala Giu Asp Asn Thr Val Ser Phe Leu Gin Pro Asn Gly Ala Ile Phe Glu Pro Ser Leu Ser Val Gly Thr Giu Ala Asp Asn Phe Thr Val Leu Asn Leu
	105 110
	>caggacgctgaggacaacacagtctctttcctgcagcccaatggtgccatcttcgaaccttcactatcagttggaacagaggctgacaacttcacagttctcaatctg
603	M M M M M M M M M M M M M M M M M M M
	ctggctgtggcagctgcatcccatatctatcaaaatcaatttgttcaaatgatcctcaattcacttattaacaagtcaaaatcttctatgttccaagtcagaactttg gaccgacaccgtcgacgtaggtatagatagttttagttaaacaagtttactaggggttaagtgaataattgttcagttttagaagatacaaggttcagtcttgaaac 140 - 145 - 150 - 155 - 160 - 165 - 175 Leu Ala Val Ala Ala Ala Ser His Ile Tyr Gin Asn Gin Phe Val Gin Met Ile Leu Asn Ser Leu Ile Asn Lys Ser Lys Ser Ser Met Phe Gin Val Arg Thr Leu
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	ctggctgtggcagctgcatcccatatctatcaaaatcaatttgttcaaatgatcctcaattcacttattaacaagtcaaaatcttctatgttccaagtcagaactttg ctggctgtggcagctgcatcccatatctatcaaaatcaatttgttcaaatgatcctcaattcacttattaacaagtcaaaatcttctatgttccaagtcagaactttg
604	$\mathcal{M}_{\mathcal{A}_{\mathcal{A}}} \mathcal{M}_{\mathcal{A}_{\mathcal{A}}} \mathcal{M}_{\mathcal{A}} \mathcal{M} \mathcal{M}_{\mathcal{A}} \mathcal{M} \mathcal{M}_{\mathcal{A}} \mathcal{M}_{\mathcal{A}} \mathcal{M} \mathcal{M}_{\mathcal{A}} \mathcal{M} \mathcal{M}_{\mathcal{A}} \mathcal{M} \mathcal{M}_{\mathcal{A}} \mathcal{M} \mathcal{M}_{\mathcal{A}} \mathcal{M} \mathcal{M} \mathcal{M}_{\mathcal{A}} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} $
	ttgagagaactgttatggggctatagggatccatttttgagtttggttccgtaccctgttactaccacagttggtctgttttatccttacaacaatactgcagatgga aactctcttgacaatacagatgggacaatggggacaatggggcaatggggcaatggggcaaccagacaaaataggaaagttgttatgacgtctacct
	175
	175 - 180 - 185 - 190 - 195 - 200 - 205 - 210 Leu Arg Glu Leu Leu Trp Gly Tyr Arg Asp Pro Phe Leu Ser Leu Val Pro Tyr Pro Val Thr Thr Val Gly Leu Phe Tyr Pro Tyr Asn Asn Thr Ala Asp Gly
	ttgagagaactgttatggggctatagggatccattttgagtttggttccgtaccctgttactaccacagttggtctgttttatccttacaacaatactgcagatgga
605	270 360 350 350 340 330 320 320 320 310 320 310 310 300 290 290 290 280 280 270

35 / 37

	ggagtttataaagttttcaatggaaaagataacataagtaaagttgccataatcgacacatataaaggtaaaaggaatctgtcctattgggaaagtcactgcgacatg.
	sctcaaatatttcaaaagttaccttttctattgtattcatttcaacggtattagctgtgtatattccattttccttagacaggataaccctttcagtgacgctgtac 210 215 - 200 - 200 - 255 - 200 - 255 - 200 - 255 - 200 - 255 - 200 - 255 - 200 - 240 - 240 - 245 Gly Val Tyr Lys Val Phe Asn Gly Lys Asn IIe Ser Lys Val Ala IIe IIe Asp Thr Tyr Lys Gly Lys Arg Asn Leu Ser Tyr Tyr Giu Ser His Cys Asp Met
	$Cd36 \rightarrow 210$, 215 , 220 , 230 , 235 , 235 , 240 , 245 , 246 , 2
	ygayttataaayttttcaatyyaaaayataacataaytaaayttgccataattyacatataaayyaatatytattyyaaaytattyyyaaaytaatytaaty
606	$\underbrace{M}_{260} \underbrace{M}_{250} \underbrace{M}_{240} \underbrace{M}_{240} \underbrace{M}_{230} \underbrace{M}_{220} \underbrace{M}_{210} \underbrace{M}_{200} \underbrace{M}_{200} \underbrace{M}_{190} $
	patgattaatggtacagatgcagcctcatttccacctttgttgagaaaagccaggtattgcagttcttttcttctgatatttgcaggtcaatctatgctgtatttgaa ptactaattaccatgtctacgtcggagtaaaggtggaaacaaccttttcggtccaataacgtcaagaaaagaagactataaacgtccagttagataga
	245 250 250 265 265 275 280 Met Ile Asn Gly Thr Asp Ala Ala Ser Phe Pro Pro Phe Val Glu Lys Ser Gln Val Leu Gln Phe Phe Ser Ser Asp Ile Cys Arg Ser Ile Tyr Ala Val Phe Glu
	conc atgattaatggtacagatgcagcctcatttccaccttttgttgagaaaagccaggtattgcagttcttttcttctgatatttgcaggtcaatctatgctgtatttgaa
	CATGATTAATGGTACAGATGCAGCCTCATTTCCACCTTTTGTTGAGAAAAGCCAGGTATTGCAGTTCTTTTCTTCTGATATTTGCAGGTCAATCTATGCTGTATTTGAA
607	12 marsh mar
	tgaatccgacgttaatctgaaaggaatccctgtgtatagatttgttcttccatcca
	$Cd36 \rightarrow$
	280 285 290 295 300 305 310
	CD36 → Cd36 →
	tgaatccgacgttaatctgaaaggaatccctgtgtatagatttgttcttccatcca
	FGAATCCGACGTTAATCTGAAAGGAATCCCTGTGTATAGATTTGTTCTTCCATCCA
608	
608	IGAATCCGACGTTAATCTGAAAAGGAATCCCTGTGTATAGATTTGTTCTTCCATCCA
608	GAATCCGACGTTAATCTGAAAGGAATCCCTGTGTATAGATTTGTTCTTCCCATCCAAGGCCTTTGCCTCTCCAGTTGAAAACCCAGGACAACTATTGTTTCTGCACAGAA GB0 670 660 650 640 630 620 610 600 590 590 580 580 580 580 580 580 580 580 580 58
608	$ \begin{array}{c} GAATCCGACGTTAATCTGAAAGGAATCCCTGTGTATAGATTTGTTCTTCCATCCA$
608	$ \begin{array}{c} GAATCCGACGTTAATCTGAAAGGAATCCCTGTGTATAGATTTGTTCTTCCATCCA$
608	GAATCCGACGTTAATCTGAAAGGAATCCCTGTGTATAGATTTGTTCTTCCATCCA
608	GAATCCGACGTTAATCTGAAAGGAATCCCTGTGTATAGATTTGTTCTTCCATCCA
608	IGAATCCGACGTTAATCTGAAAGGAATCCCTGTGTATAGATTTGTTCTTCCATCCA
608	GAATCCGACGTTAATCTGAAAGGAATCCCTGTGTATAGATTTGTTCTTCCATCCA
608	GAATCCGACGTTAATCTGAAAGGAATCCCTGTGTATAGATTTGTTCTTCCATCCA
608 609	GAATCCCGACGTTAATCGGAAAGGAATCCCTGTGTATAGATTTGTTCTTCCATCCA
608	GAATCCGACGTTAATGTGAAAGGAATCCCTGTGTATAGATTTGTTCTTCCATCCA
608	GAATCCGACGTTAATCTGAAAAGGAATCCCTGTGTATAGATTTGTTCTTCCATCCA
608	GAATCCGACGTTAATCTGAAAGGGAATCCCTGTGTATAGATTTGTTCTTCCATCCA
608	GAATGCGAGGTTAATCTGAAAGGAATCCCTGTGTATAGATTTGTTCTTCCATCCA
608	GAATCCCAACGTTAATCTGAAAAGGAATCCCTGTGTATAGATTTGTTCTTCCATCCA
608	GAATCCCAACGTTAATCTGAAAGGAATCCCTGTGTATAGATTTGTTCTTCCACGAGGCCTTTGCCTCTCCAGTCAAAACCCAAGCAACTATTGTTTCTGCACAGAA GaaGaattatctcaaaaaattgtacatcatatgggtgtcagacatcagcaaatgcaaggaggagcctgtgtacatttcacttcctattttctgtatgcagg ctttttttaatagagtttttttaacatgtaggtgtacacacagatcgtgtgtcacatggaactgggaggagggggggg

	aaacggctgcaggtcaacctattggtcaagccatcagaaaaaattcaagtattaaagaatctgaagaggaactatattgtgcctattctttggcttaatgagactggg
	tttgccgacgtccagttggataaccagttcggtagtctttttaagttcataatttcttagacttctccttgatataacacggataagaaaccgaattactctgaccc
	385, 390 , 390 , 395 , 415 , $420Lys Arg Leu Gin Val Asn Leu Leu Val Lys Pro Ser Giu Lys Ile Gin Val Leu Lys Asn Leu Lys Arg Asn Tyr Ile Val Pro Ile Leu Trp Leu Asn Giu Thr GiyCd36 \rightarrow$
	385 390 395 400 405 410 415 420 Lys Arg Leu Gin Val Asn Leu Leu Val Lys Pro Ser Giu Lys Ile Gin Val Lys Asn Leu Lys Asn Tyr Ile Val Pro Ile Leu Trp Leu Asn Giu Thr Giy
	C436 →
	aaacggctgcaggtcaacctattggtcaagccatcagaaaaattcaagtattaaagaatctgaagaggaactatattgtgcctattctttggcttaatgagactggg
	AAACGGCTGCAGGTCAACCTATTGGTCAAGCCATCAGAAAAAATTCAAGTATTAAAGAATCTGAAGAGGAACTATATTGTGCCTATTCTTTGGCTTAATGAGACTGGG.
611	MM322 MM32 MM322 MM322 M
	.gggaccattggtgatgagaaggcaaacatgttcagaagtcaagtaactggaaaaataaacctccttggcatggtagagatggccttacttgggattggagtggtgatg
	420 445 445 450 450 455 450 455 450 455 450 455 450 455 450 450
	Cd36 →
	420 435 430 435 430 435 430 435 435 435 4430 443 436 4435 4436 445 445 445 445 445 445 445 445 445 44
	gggaccattggtgatgagaaggcaaacatgttcagaagtcaagtaactggaaaaataaacctccttggcatggtagagatggccttacttgggattggagtggtgatg
612	СБОБАССАТТОВСТВАТ БАБААВ БСАЛАА САТОТТСАВААВ ТСАЛАВТААСТВОАЛАЛАЛАЛАЛАСТССТТТОВСАТОВСТВОЕТ БАБАВАТОВССТТАСТТОВОВАТТОВСАТОВСТВАТС Милинининининининининининининининининини
	gatgtttgttgcttttatgatttcatattgtgcttgcaaatccaagaatggaaaataagtagtggatgagcctacatatacactggctacatctttggtaaagccgat
	ctacaaacaacgaaaatactaaagtataacacgaacgtttaggttcttaccttttattcatcacctactcggatgtatatgtgaccgatgtagaaaccatttcggcta
	455
	Cd36 exon
	(in frame with CD36)
	gatgtttgttgcttttatgatttcatattgtgcttgcaaatccaagaatggaaaataagtagtggatgagcctacatatacactggctacatctttggtaaagccgat
	GATGTTTGTTGCTTTATGATTTCATATTGTGCTTGCAAATCCAAGAATGGAAAATAAGTAGTGGATGAGCCTACATATACACTGGCTACATCTTTGGTAAAGCCGAT
613	Manufan Ma Manufan Manufan Man
015	130 140 130 120 110 100 30 60 70 60 30
614	S5 Fig. The full-length Sanger sequencing data of the CD36 CDS in homozygous
014	se ing, ine ian iengen bunger bequenenng auta of the OD00 OD0 in nomozygous
615	hCD36 mice.